Zephyr Project API  3.1.0
A Scalable Open Source RTOS
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
23
24#ifdef __cplusplus
25extern "C" {
26#endif
27
35#define K_ANY NULL
36#define K_END NULL
37
38#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
39#error Zero available thread priorities defined!
40#endif
41
42#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
43#define K_PRIO_PREEMPT(x) (x)
44
45#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
46#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
47#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
48#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
49#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
50
51#ifdef CONFIG_POLL
52#define _POLL_EVENT_OBJ_INIT(obj) \
53 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
54#define _POLL_EVENT sys_dlist_t poll_events
55#else
56#define _POLL_EVENT_OBJ_INIT(obj)
57#define _POLL_EVENT
58#endif
59
60struct k_thread;
61struct k_mutex;
62struct k_sem;
63struct k_msgq;
64struct k_mbox;
65struct k_pipe;
66struct k_queue;
67struct k_fifo;
68struct k_lifo;
69struct k_stack;
70struct k_mem_slab;
71struct k_mem_pool;
72struct k_timer;
73struct k_poll_event;
74struct k_poll_signal;
75struct k_mem_domain;
76struct k_mem_partition;
77struct k_futex;
78struct k_event;
79
81 K_ISR = 0,
84};
85
86/* private, used by k_poll and k_work_poll */
87struct k_work_poll;
88typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
89
95typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
96 void *user_data);
97
114
143 k_thread_user_cb_t user_cb, void *user_data);
144
153#endif /* !_ASMLANGUAGE */
154
155
156/*
157 * Thread user options. May be needed by assembly code. Common part uses low
158 * bits, arch-specific use high bits.
159 */
160
164#define K_ESSENTIAL (BIT(0))
165
166#if defined(CONFIG_FPU_SHARING)
176#define K_FP_REGS (BIT(1))
177#endif
178
185#define K_USER (BIT(2))
186
195#define K_INHERIT_PERMS (BIT(3))
196
206#define K_CALLBACK_STATE (BIT(4))
207
208#ifdef CONFIG_X86
209/* x86 Bitmask definitions for threads user options */
210
211#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
221#define K_SSE_REGS (BIT(7))
222#endif
223#endif
224
225/* end - thread options */
226
227#if !defined(_ASMLANGUAGE)
276__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
278 size_t stack_size,
280 void *p1, void *p2, void *p3,
281 int prio, uint32_t options, k_timeout_t delay);
282
305 void *p1, void *p2,
306 void *p3);
307
321#define k_thread_access_grant(thread, ...) \
322 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
323
338static inline void k_thread_heap_assign(struct k_thread *thread,
339 struct k_heap *heap)
340{
341 thread->resource_pool = heap;
342}
343
344#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
365__syscall int k_thread_stack_space_get(const struct k_thread *thread,
366 size_t *unused_ptr);
367#endif
368
369#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
383#endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */
384
405
420
432{
433 return k_sleep(Z_TIMEOUT_MS(ms));
434}
435
452
465__syscall void k_busy_wait(uint32_t usec_to_wait);
466
478bool k_can_yield(void);
479
487__syscall void k_yield(void);
488
498__syscall void k_wakeup(k_tid_t thread);
499
507__attribute_const__
508__syscall k_tid_t z_current_get(void);
509
510#ifdef CONFIG_THREAD_LOCAL_STORAGE
511/* Thread-local cache of current thread ID, set in z_thread_entry() */
512extern __thread k_tid_t z_tls_current;
513#endif
514
521__attribute_const__
522static inline k_tid_t k_current_get(void)
523{
524#ifdef CONFIG_THREAD_LOCAL_STORAGE
525 return z_tls_current;
526#else
527 return z_current_get();
528#endif
529}
530
555
556
567
568extern k_ticks_t z_timeout_expires(const struct _timeout *timeout);
569extern k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
570
571#ifdef CONFIG_SYS_CLOCK_EXISTS
572
581
582static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
583 const struct k_thread *t)
584{
585 return z_timeout_expires(&t->base.timeout);
586}
587
596
597static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
598 const struct k_thread *t)
599{
600 return z_timeout_remaining(&t->base.timeout);
601}
602
603#endif /* CONFIG_SYS_CLOCK_EXISTS */
604
609/* timeout has timed out and is not on _timeout_q anymore */
610#define _EXPIRED (-2)
611
612struct _static_thread_data {
613 struct k_thread *init_thread;
614 k_thread_stack_t *init_stack;
615 unsigned int init_stack_size;
617 void *init_p1;
618 void *init_p2;
619 void *init_p3;
620 int init_prio;
621 uint32_t init_options;
622 int32_t init_delay;
623 void (*init_abort)(void);
624 const char *init_name;
625};
626
627#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
628 entry, p1, p2, p3, \
629 prio, options, delay, abort, tname) \
630 { \
631 .init_thread = (thread), \
632 .init_stack = (stack), \
633 .init_stack_size = (stack_size), \
634 .init_entry = (k_thread_entry_t)entry, \
635 .init_p1 = (void *)p1, \
636 .init_p2 = (void *)p2, \
637 .init_p3 = (void *)p3, \
638 .init_prio = (prio), \
639 .init_options = (options), \
640 .init_delay = (delay), \
641 .init_abort = (abort), \
642 .init_name = STRINGIFY(tname), \
643 }
644
678#define K_THREAD_DEFINE(name, stack_size, \
679 entry, p1, p2, p3, \
680 prio, options, delay) \
681 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
682 struct k_thread _k_thread_obj_##name; \
683 STRUCT_SECTION_ITERABLE(_static_thread_data, _k_thread_data_##name) = \
684 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
685 _k_thread_stack_##name, stack_size, \
686 entry, p1, p2, p3, prio, options, delay, \
687 NULL, name); \
688 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
689
700
726__syscall void k_thread_priority_set(k_tid_t thread, int prio);
727
728
729#ifdef CONFIG_SCHED_DEADLINE
762__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
763#endif
764
765#ifdef CONFIG_SCHED_CPU_MASK
779
793
807
821
833#endif
834
851
863
890extern void k_sched_time_slice_set(int32_t slice, int prio);
891
930void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
931 k_thread_timeslice_fn_t expired, void *data);
932
951extern bool k_is_in_isr(void);
952
969__syscall int k_is_preempt_thread(void);
970
982static inline bool k_is_pre_kernel(void)
983{
984 extern bool z_sys_post_kernel; /* in init.c */
985
986 return !z_sys_post_kernel;
987}
988
1014extern void k_sched_lock(void);
1015
1023extern void k_sched_unlock(void);
1024
1037__syscall void k_thread_custom_data_set(void *value);
1038
1046__syscall void *k_thread_custom_data_get(void);
1047
1061__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1062
1072
1084__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1085 size_t size);
1086
1099const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1100
1118#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1119
1132#define K_NSEC(t) Z_TIMEOUT_NS(t)
1133
1146#define K_USEC(t) Z_TIMEOUT_US(t)
1147
1158#define K_CYC(t) Z_TIMEOUT_CYC(t)
1159
1170#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1171
1182#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1183
1194#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1195
1206#define K_MINUTES(m) K_SECONDS((m) * 60)
1207
1218#define K_HOURS(h) K_MINUTES((h) * 60)
1219
1228#define K_FOREVER Z_FOREVER
1229
1230#ifdef CONFIG_TIMEOUT_64BIT
1231
1243#define K_TIMEOUT_ABS_TICKS(t) \
1244 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1245
1257#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1258
1271#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1272
1285#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1286
1299#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1300
1301#endif
1302
1311struct k_timer {
1312 /*
1313 * _timeout structure must be first here if we want to use
1314 * dynamic timer allocation. timeout.node is used in the double-linked
1315 * list of free timers
1316 */
1317 struct _timeout timeout;
1318
1319 /* wait queue for the (single) thread waiting on this timer */
1320 _wait_q_t wait_q;
1321
1322 /* runs in ISR context */
1323 void (*expiry_fn)(struct k_timer *timer);
1324
1325 /* runs in the context of the thread that calls k_timer_stop() */
1326 void (*stop_fn)(struct k_timer *timer);
1327
1328 /* timer period */
1329 k_timeout_t period;
1330
1331 /* timer status */
1332 uint32_t status;
1333
1334 /* user-specific data, also used to support legacy features */
1335 void *user_data;
1336
1338};
1339
1340#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1341 { \
1342 .timeout = { \
1343 .node = {},\
1344 .fn = z_timer_expiration_handler, \
1345 .dticks = 0, \
1346 }, \
1347 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1348 .expiry_fn = expiry, \
1349 .stop_fn = stop, \
1350 .status = 0, \
1351 .user_data = 0, \
1352 }
1353
1374typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1375
1390typedef void (*k_timer_stop_t)(struct k_timer *timer);
1391
1403#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1404 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1405 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1406
1416extern void k_timer_init(struct k_timer *timer,
1417 k_timer_expiry_t expiry_fn,
1418 k_timer_stop_t stop_fn);
1419
1434__syscall void k_timer_start(struct k_timer *timer,
1435 k_timeout_t duration, k_timeout_t period);
1436
1453__syscall void k_timer_stop(struct k_timer *timer);
1454
1467__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1468
1486__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1487
1488#ifdef CONFIG_SYS_CLOCK_EXISTS
1489
1500__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1501
1502static inline k_ticks_t z_impl_k_timer_expires_ticks(
1503 const struct k_timer *timer)
1504{
1505 return z_timeout_expires(&timer->timeout);
1506}
1507
1515__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1516
1517static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1518 const struct k_timer *timer)
1519{
1520 return z_timeout_remaining(&timer->timeout);
1521}
1522
1533static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1534{
1536}
1537
1538#endif /* CONFIG_SYS_CLOCK_EXISTS */
1539
1552__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1553
1557static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1558 void *user_data)
1559{
1560 timer->user_data = user_data;
1561}
1562
1570__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1571
1572static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1573{
1574 return timer->user_data;
1575}
1576
1594__syscall int64_t k_uptime_ticks(void);
1595
1609static inline int64_t k_uptime_get(void)
1610{
1612}
1613
1633static inline uint32_t k_uptime_get_32(void)
1634{
1635 return (uint32_t)k_uptime_get();
1636}
1637
1649static inline int64_t k_uptime_delta(int64_t *reftime)
1650{
1651 int64_t uptime, delta;
1652
1653 uptime = k_uptime_get();
1654 delta = uptime - *reftime;
1655 *reftime = uptime;
1656
1657 return delta;
1658}
1659
1668static inline uint32_t k_cycle_get_32(void)
1669{
1670 return arch_k_cycle_get_32();
1671}
1672
1683static inline uint64_t k_cycle_get_64(void)
1684{
1685 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1686 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1687 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1688 return 0;
1689 }
1690
1691 return arch_k_cycle_get_64();
1692}
1693
1702struct k_queue {
1703 sys_sflist_t data_q;
1704 struct k_spinlock lock;
1705 _wait_q_t wait_q;
1706
1707 _POLL_EVENT;
1708
1710};
1711
1712#define Z_QUEUE_INITIALIZER(obj) \
1713 { \
1714 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1715 .lock = { }, \
1716 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1717 _POLL_EVENT_OBJ_INIT(obj) \
1718 }
1719
1720extern void *z_queue_node_peek(sys_sfnode_t *node, bool needs_free);
1721
1739__syscall void k_queue_init(struct k_queue *queue);
1740
1754__syscall void k_queue_cancel_wait(struct k_queue *queue);
1755
1768extern void k_queue_append(struct k_queue *queue, void *data);
1769
1786__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1787
1800extern void k_queue_prepend(struct k_queue *queue, void *data);
1801
1818__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1819
1833extern void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1834
1853extern int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
1854
1870extern int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
1871
1890__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
1891
1908bool k_queue_remove(struct k_queue *queue, void *data);
1909
1924bool k_queue_unique_append(struct k_queue *queue, void *data);
1925
1939__syscall int k_queue_is_empty(struct k_queue *queue);
1940
1941static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
1942{
1943 return (int)sys_sflist_is_empty(&queue->data_q);
1944}
1945
1955__syscall void *k_queue_peek_head(struct k_queue *queue);
1956
1966__syscall void *k_queue_peek_tail(struct k_queue *queue);
1967
1977#define K_QUEUE_DEFINE(name) \
1978 STRUCT_SECTION_ITERABLE(k_queue, name) = \
1979 Z_QUEUE_INITIALIZER(name)
1980
1983#ifdef CONFIG_USERSPACE
1993struct k_futex {
1995};
1996
2004struct z_futex_data {
2005 _wait_q_t wait_q;
2006 struct k_spinlock lock;
2007};
2008
2009#define Z_FUTEX_DATA_INITIALIZER(obj) \
2010 { \
2011 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2012 }
2013
2039__syscall int k_futex_wait(struct k_futex *futex, int expected,
2041
2056__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2057
2059#endif
2060
2072struct k_event {
2073 _wait_q_t wait_q;
2076};
2077
2078#define Z_EVENT_INITIALIZER(obj) \
2079 { \
2080 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2081 .events = 0 \
2082 }
2083
2091__syscall void k_event_init(struct k_event *event);
2092
2106__syscall void k_event_post(struct k_event *event, uint32_t events);
2107
2121__syscall void k_event_set(struct k_event *event, uint32_t events);
2122
2144__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2145 bool reset, k_timeout_t timeout);
2146
2168__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2169 bool reset, k_timeout_t timeout);
2170
2180#define K_EVENT_DEFINE(name) \
2181 STRUCT_SECTION_ITERABLE(k_event, name) = \
2182 Z_EVENT_INITIALIZER(name);
2183
2186struct k_fifo {
2187 struct k_queue _queue;
2188};
2189
2193#define Z_FIFO_INITIALIZER(obj) \
2194 { \
2195 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2196 }
2197
2215#define k_fifo_init(fifo) \
2216 ({ \
2217 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2218 k_queue_init(&(fifo)->_queue); \
2219 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2220 })
2221
2233#define k_fifo_cancel_wait(fifo) \
2234 ({ \
2235 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2236 k_queue_cancel_wait(&(fifo)->_queue); \
2237 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2238 })
2239
2252#define k_fifo_put(fifo, data) \
2253 ({ \
2254 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2255 k_queue_append(&(fifo)->_queue, data); \
2256 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2257 })
2258
2275#define k_fifo_alloc_put(fifo, data) \
2276 ({ \
2277 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2278 int ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2279 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, ret); \
2280 ret; \
2281 })
2282
2297#define k_fifo_put_list(fifo, head, tail) \
2298 ({ \
2299 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2300 k_queue_append_list(&(fifo)->_queue, head, tail); \
2301 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2302 })
2303
2317#define k_fifo_put_slist(fifo, list) \
2318 ({ \
2319 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2320 k_queue_merge_slist(&(fifo)->_queue, list); \
2321 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2322 })
2323
2341#define k_fifo_get(fifo, timeout) \
2342 ({ \
2343 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2344 void *ret = k_queue_get(&(fifo)->_queue, timeout); \
2345 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, ret); \
2346 ret; \
2347 })
2348
2362#define k_fifo_is_empty(fifo) \
2363 k_queue_is_empty(&(fifo)->_queue)
2364
2378#define k_fifo_peek_head(fifo) \
2379 ({ \
2380 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2381 void *ret = k_queue_peek_head(&(fifo)->_queue); \
2382 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, ret); \
2383 ret; \
2384 })
2385
2397#define k_fifo_peek_tail(fifo) \
2398 ({ \
2399 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2400 void *ret = k_queue_peek_tail(&(fifo)->_queue); \
2401 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, ret); \
2402 ret; \
2403 })
2404
2414#define K_FIFO_DEFINE(name) \
2415 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_fifo, name) = \
2416 Z_FIFO_INITIALIZER(name)
2417
2420struct k_lifo {
2421 struct k_queue _queue;
2422};
2423
2428#define Z_LIFO_INITIALIZER(obj) \
2429 { \
2430 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2431 }
2432
2450#define k_lifo_init(lifo) \
2451 ({ \
2452 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2453 k_queue_init(&(lifo)->_queue); \
2454 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2455 })
2456
2469#define k_lifo_put(lifo, data) \
2470 ({ \
2471 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2472 k_queue_prepend(&(lifo)->_queue, data); \
2473 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2474 })
2475
2492#define k_lifo_alloc_put(lifo, data) \
2493 ({ \
2494 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2495 int ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2496 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, ret); \
2497 ret; \
2498 })
2499
2517#define k_lifo_get(lifo, timeout) \
2518 ({ \
2519 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2520 void *ret = k_queue_get(&(lifo)->_queue, timeout); \
2521 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, ret); \
2522 ret; \
2523 })
2524
2534#define K_LIFO_DEFINE(name) \
2535 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_lifo, name) = \
2536 Z_LIFO_INITIALIZER(name)
2537
2543#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2544
2545typedef uintptr_t stack_data_t;
2546
2547struct k_stack {
2548 _wait_q_t wait_q;
2549 struct k_spinlock lock;
2550 stack_data_t *base, *next, *top;
2551
2552 uint8_t flags;
2553
2555};
2556
2557#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2558 { \
2559 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2560 .base = stack_buffer, \
2561 .next = stack_buffer, \
2562 .top = stack_buffer + stack_num_entries, \
2563 }
2564
2584void k_stack_init(struct k_stack *stack,
2585 stack_data_t *buffer, uint32_t num_entries);
2586
2587
2602__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2603 uint32_t num_entries);
2604
2616int k_stack_cleanup(struct k_stack *stack);
2617
2631__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2632
2653__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2655
2666#define K_STACK_DEFINE(name, stack_num_entries) \
2667 stack_data_t __noinit \
2668 _k_stack_buf_##name[stack_num_entries]; \
2669 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2670 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2671 stack_num_entries)
2672
2679struct k_work;
2680struct k_work_q;
2681struct k_work_queue_config;
2682struct k_delayed_work;
2683extern struct k_work_q k_sys_work_q;
2684
2699struct k_mutex {
2701 _wait_q_t wait_q;
2704
2707
2710
2712};
2713
2717#define Z_MUTEX_INITIALIZER(obj) \
2718 { \
2719 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2720 .owner = NULL, \
2721 .lock_count = 0, \
2722 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2723 }
2724
2738#define K_MUTEX_DEFINE(name) \
2739 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2740 Z_MUTEX_INITIALIZER(name)
2741
2754__syscall int k_mutex_init(struct k_mutex *mutex);
2755
2756
2779
2800__syscall int k_mutex_unlock(struct k_mutex *mutex);
2801
2808 _wait_q_t wait_q;
2809};
2810
2811#define Z_CONDVAR_INITIALIZER(obj) \
2812 { \
2813 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2814 }
2815
2828__syscall int k_condvar_init(struct k_condvar *condvar);
2829
2836__syscall int k_condvar_signal(struct k_condvar *condvar);
2837
2845__syscall int k_condvar_broadcast(struct k_condvar *condvar);
2846
2864__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
2866
2877#define K_CONDVAR_DEFINE(name) \
2878 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
2879 Z_CONDVAR_INITIALIZER(name)
2888struct k_sem {
2889 _wait_q_t wait_q;
2890 unsigned int count;
2891 unsigned int limit;
2892
2893 _POLL_EVENT;
2894
2896
2897};
2898
2899#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
2900 { \
2901 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2902 .count = initial_count, \
2903 .limit = count_limit, \
2904 _POLL_EVENT_OBJ_INIT(obj) \
2905 }
2906
2925#define K_SEM_MAX_LIMIT UINT_MAX
2926
2942__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
2943 unsigned int limit);
2944
2963__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
2964
2975__syscall void k_sem_give(struct k_sem *sem);
2976
2986__syscall void k_sem_reset(struct k_sem *sem);
2987
2997__syscall unsigned int k_sem_count_get(struct k_sem *sem);
2998
3002static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3003{
3004 return sem->count;
3005}
3006
3018#define K_SEM_DEFINE(name, initial_count, count_limit) \
3019 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3020 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3021 BUILD_ASSERT(((count_limit) != 0) && \
3022 ((initial_count) <= (count_limit)) && \
3023 ((count_limit) <= K_SEM_MAX_LIMIT));
3024
3031struct k_work_delayable;
3032struct k_work_sync;
3033
3050typedef void (*k_work_handler_t)(struct k_work *work);
3051
3067
3082int k_work_busy_get(const struct k_work *work);
3083
3097static inline bool k_work_is_pending(const struct k_work *work);
3098
3120 struct k_work *work);
3121
3130extern int k_work_submit(struct k_work *work);
3131
3157 struct k_work_sync *sync);
3158
3179
3210bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3211
3222
3243 k_thread_stack_t *stack, size_t stack_size,
3244 int prio, const struct k_work_queue_config *cfg);
3245
3255static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3256
3280int k_work_queue_drain(struct k_work_q *queue, bool plug);
3281
3296
3312
3324static inline struct k_work_delayable *
3326
3341
3356static inline bool k_work_delayable_is_pending(
3357 const struct k_work_delayable *dwork);
3358
3373 const struct k_work_delayable *dwork);
3374
3389 const struct k_work_delayable *dwork);
3390
3417 struct k_work_delayable *dwork,
3418 k_timeout_t delay);
3419
3434 k_timeout_t delay);
3435
3472 struct k_work_delayable *dwork,
3473 k_timeout_t delay);
3474
3488 k_timeout_t delay);
3489
3515 struct k_work_sync *sync);
3516
3538
3568 struct k_work_sync *sync);
3569
3570enum {
3575 /* The atomic API is used for all work and queue flags fields to
3576 * enforce sequential consistency in SMP environments.
3577 */
3578
3579 /* Bits that represent the work item states. At least nine of the
3580 * combinations are distinct valid stable states.
3581 */
3582 K_WORK_RUNNING_BIT = 0,
3583 K_WORK_CANCELING_BIT = 1,
3584 K_WORK_QUEUED_BIT = 2,
3585 K_WORK_DELAYED_BIT = 3,
3586
3587 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3588 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT),
3589
3590 /* Static work flags */
3591 K_WORK_DELAYABLE_BIT = 8,
3592 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3593
3594 /* Dynamic work queue flags */
3595 K_WORK_QUEUE_STARTED_BIT = 0,
3596 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3597 K_WORK_QUEUE_BUSY_BIT = 1,
3598 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3599 K_WORK_QUEUE_DRAIN_BIT = 2,
3600 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3601 K_WORK_QUEUE_PLUGGED_BIT = 3,
3602 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3603
3604 /* Static work queue flags */
3605 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3606 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3607
3611 /* Transient work flags */
3612
3618 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3619
3624 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3625
3631 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3632
3638 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3639};
3640
3642struct k_work {
3643 /* All fields are protected by the work module spinlock. No fields
3644 * are to be accessed except through kernel API.
3645 */
3646
3647 /* Node to link into k_work_q pending list. */
3649
3650 /* The function to be invoked by the work queue thread. */
3652
3653 /* The queue on which the work item was last submitted. */
3655
3656 /* State of the work item.
3657 *
3658 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3659 *
3660 * It can be RUNNING and CANCELING simultaneously.
3661 */
3663};
3664
3665#define Z_WORK_INITIALIZER(work_handler) { \
3666 .handler = work_handler, \
3667}
3668
3671 /* The work item. */
3672 struct k_work work;
3673
3674 /* Timeout used to submit work after a delay. */
3675 struct _timeout timeout;
3676
3677 /* The queue to which the work should be submitted. */
3679};
3680
3681#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3682 .work = { \
3683 .handler = work_handler, \
3684 .flags = K_WORK_DELAYABLE, \
3685 }, \
3686}
3687
3704#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3705 struct k_work_delayable work \
3706 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3707
3712/* Record used to wait for work to flush.
3713 *
3714 * The work item is inserted into the queue that will process (or is
3715 * processing) the item, and will be processed as soon as the item
3716 * completes. When the flusher is processed the semaphore will be
3717 * signaled, releasing the thread waiting for the flush.
3718 */
3719struct z_work_flusher {
3720 struct k_work work;
3721 struct k_sem sem;
3722};
3723
3724/* Record used to wait for work to complete a cancellation.
3725 *
3726 * The work item is inserted into a global queue of pending cancels.
3727 * When a cancelling work item goes idle any matching waiters are
3728 * removed from pending_cancels and are woken.
3729 */
3730struct z_work_canceller {
3731 sys_snode_t node;
3732 struct k_work *work;
3733 struct k_sem sem;
3734};
3735
3754 union {
3755 struct z_work_flusher flusher;
3756 struct z_work_canceller canceller;
3757 };
3758};
3759
3771 const char *name;
3772
3786};
3787
3789struct k_work_q {
3790 /* The thread that animates the work. */
3792
3793 /* All the following fields must be accessed only while the
3794 * work module spinlock is held.
3795 */
3796
3797 /* List of k_work items to be worked. */
3799
3800 /* Wait queue for idle work thread. */
3801 _wait_q_t notifyq;
3802
3803 /* Wait queue for threads waiting for the queue to drain. */
3804 _wait_q_t drainq;
3805
3806 /* Flags describing queue state. */
3808};
3809
3810/* Provide the implementation for inline functions declared above */
3811
3812static inline bool k_work_is_pending(const struct k_work *work)
3813{
3814 return k_work_busy_get(work) != 0;
3815}
3816
3817static inline struct k_work_delayable *
3819{
3820 return CONTAINER_OF(work, struct k_work_delayable, work);
3821}
3822
3824 const struct k_work_delayable *dwork)
3825{
3826 return k_work_delayable_busy_get(dwork) != 0;
3827}
3828
3830 const struct k_work_delayable *dwork)
3831{
3832 return z_timeout_expires(&dwork->timeout);
3833}
3834
3836 const struct k_work_delayable *dwork)
3837{
3838 return z_timeout_remaining(&dwork->timeout);
3839}
3840
3842{
3843 return &queue->thread;
3844}
3845
3846/* Legacy wrappers */
3847
3848__deprecated
3849static inline bool k_work_pending(const struct k_work *work)
3850{
3851 return k_work_is_pending(work);
3852}
3853
3854__deprecated
3855static inline void k_work_q_start(struct k_work_q *work_q,
3857 size_t stack_size, int prio)
3858{
3859 k_work_queue_start(work_q, stack, stack_size, prio, NULL);
3860}
3861
3862/* deprecated, remove when corresponding deprecated API is removed. */
3865};
3866
3867#define Z_DELAYED_WORK_INITIALIZER(work_handler) __DEPRECATED_MACRO { \
3868 .work = Z_WORK_DELAYABLE_INITIALIZER(work_handler), \
3869}
3870
3871__deprecated
3872static inline void k_delayed_work_init(struct k_delayed_work *work,
3874{
3876}
3877
3878__deprecated
3879static inline int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
3880 struct k_delayed_work *work,
3881 k_timeout_t delay)
3882{
3883 int rc = k_work_reschedule_for_queue(work_q, &work->work, delay);
3884
3885 /* Legacy API doesn't distinguish success cases. */
3886 return (rc >= 0) ? 0 : rc;
3887}
3888
3889__deprecated
3891 k_timeout_t delay)
3892{
3893 int rc = k_work_reschedule(&work->work, delay);
3894
3895 /* Legacy API doesn't distinguish success cases. */
3896 return (rc >= 0) ? 0 : rc;
3897}
3898
3899__deprecated
3901{
3902 bool pending = k_work_delayable_is_pending(&work->work);
3903 int rc = k_work_cancel_delayable(&work->work);
3904
3905 /* Old return value rules:
3906 *
3907 * 0 if:
3908 * * Work item countdown cancelled before the item was submitted to
3909 * its queue; or
3910 * * Work item was removed from its queue before it was processed.
3911 *
3912 * -EINVAL if:
3913 * * Work item has never been submitted; or
3914 * * Work item has been successfully cancelled; or
3915 * * Timeout handler is in the process of submitting the work item to
3916 * its queue; or
3917 * * Work queue thread has removed the work item from the queue but
3918 * has not called its handler.
3919 *
3920 * -EALREADY if:
3921 * * Work queue thread has removed the work item from the queue and
3922 * cleared its pending flag; or
3923 * * Work queue thread is invoking the item handler; or
3924 * * Work item handler has completed.
3925 *
3926
3927 * We can't reconstruct those states, so call it successful only when
3928 * a pending item is no longer pending, -EINVAL if it was pending and
3929 * still is, and cancel, and -EALREADY if it wasn't pending (so
3930 * presumably cancellation should have had no effect, assuming we
3931 * didn't hit a race condition).
3932 */
3933 if (pending) {
3934 return (rc == 0) ? 0 : -EINVAL;
3935 }
3936
3937 return -EALREADY;
3938}
3939
3940__deprecated
3941static inline bool k_delayed_work_pending(struct k_delayed_work *work)
3942{
3943 return k_work_delayable_is_pending(&work->work);
3944}
3945
3946__deprecated
3948{
3950
3951 /* Probably should be ceil32, but was floor32 */
3952 return k_ticks_to_ms_floor32(rem);
3953}
3954
3955__deprecated
3957 struct k_delayed_work *work)
3958{
3959 return k_work_delayable_expires_get(&work->work);
3960}
3961
3962__deprecated
3964 struct k_delayed_work *work)
3965{
3966 return k_work_delayable_remaining_get(&work->work);
3967}
3968
3971struct k_work_user;
3972
3987typedef void (*k_work_user_handler_t)(struct k_work_user *work);
3988
3993struct k_work_user_q {
3994 struct k_queue queue;
3995 struct k_thread thread;
3996};
3997
3998enum {
3999 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4000};
4001
4002struct k_work_user {
4003 void *_reserved; /* Used by k_queue implementation. */
4006};
4007
4012#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4013#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4014#else
4015#define Z_WORK_USER_INITIALIZER(work_handler) \
4016 { \
4017 ._reserved = NULL, \
4018 .handler = work_handler, \
4019 .flags = 0 \
4020 }
4021#endif
4022
4034#define K_WORK_USER_DEFINE(work, work_handler) \
4035 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4036
4046static inline void k_work_user_init(struct k_work_user *work,
4048{
4049 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4050}
4051
4068static inline bool k_work_user_is_pending(struct k_work_user *work)
4069{
4070 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4071}
4072
4091static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4092 struct k_work_user *work)
4093{
4094 int ret = -EBUSY;
4095
4097 K_WORK_USER_STATE_PENDING)) {
4098 ret = k_queue_alloc_append(&work_q->queue, work);
4099
4100 /* Couldn't insert into the queue. Clear the pending bit
4101 * so the work item can be submitted again
4102 */
4103 if (ret != 0) {
4105 K_WORK_USER_STATE_PENDING);
4106 }
4107 }
4108
4109 return ret;
4110}
4111
4131extern void k_work_user_queue_start(struct k_work_user_q *work_q,
4133 size_t stack_size, int prio,
4134 const char *name);
4135
4142struct k_work_poll {
4143 struct k_work work;
4144 struct k_work_q *workq;
4145 struct z_poller poller;
4146 struct k_poll_event *events;
4147 int num_events;
4148 k_work_handler_t real_handler;
4149 struct _timeout timeout;
4150 int poll_result;
4151};
4152
4173#define K_WORK_DEFINE(work, work_handler) \
4174 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4175
4187#define K_DELAYED_WORK_DEFINE(work, work_handler) __DEPRECATED_MACRO \
4188 struct k_delayed_work work = Z_DELAYED_WORK_INITIALIZER(work_handler)
4189
4199extern void k_work_poll_init(struct k_work_poll *work,
4201
4236extern int k_work_poll_submit_to_queue(struct k_work_q *work_q,
4237 struct k_work_poll *work,
4238 struct k_poll_event *events,
4239 int num_events,
4241
4273extern int k_work_poll_submit(struct k_work_poll *work,
4274 struct k_poll_event *events,
4275 int num_events,
4277
4292extern int k_work_poll_cancel(struct k_work_poll *work);
4293
4305struct k_msgq {
4307 _wait_q_t wait_q;
4311 size_t msg_size;
4324
4325 _POLL_EVENT;
4326
4329
4331};
4337#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4338 { \
4339 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4340 .msg_size = q_msg_size, \
4341 .max_msgs = q_max_msgs, \
4342 .buffer_start = q_buffer, \
4343 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4344 .read_ptr = q_buffer, \
4345 .write_ptr = q_buffer, \
4346 .used_msgs = 0, \
4347 _POLL_EVENT_OBJ_INIT(obj) \
4348 }
4349
4355#define K_MSGQ_FLAG_ALLOC BIT(0)
4356
4362 size_t msg_size;
4367};
4368
4369
4390#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4391 static char __noinit __aligned(q_align) \
4392 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4393 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4394 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4395 q_msg_size, q_max_msgs)
4396
4413void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4414 uint32_t max_msgs);
4415
4435__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4436 uint32_t max_msgs);
4437
4449
4471__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4472
4493__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4494
4509__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4510
4520__syscall void k_msgq_purge(struct k_msgq *msgq);
4521
4533
4542__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4543 struct k_msgq_attrs *attrs);
4544
4545
4546static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4547{
4548 return msgq->max_msgs - msgq->used_msgs;
4549}
4550
4561
4562static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4563{
4564 return msgq->used_msgs;
4565}
4566
4581 uint32_t _mailbox;
4583 size_t size;
4587 void *tx_data;
4589 void *_rx_data;
4597 k_tid_t _syncing_thread;
4598#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4600 struct k_sem *_async_sem;
4601#endif
4602};
4607struct k_mbox {
4609 _wait_q_t tx_msg_queue;
4611 _wait_q_t rx_msg_queue;
4613
4615};
4620#define Z_MBOX_INITIALIZER(obj) \
4621 { \
4622 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4623 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4624 }
4625
4639#define K_MBOX_DEFINE(name) \
4640 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4641 Z_MBOX_INITIALIZER(name) \
4642
4650extern void k_mbox_init(struct k_mbox *mbox);
4651
4671extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4673
4687extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4688 struct k_sem *sem);
4689
4707extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4708 void *buffer, k_timeout_t timeout);
4709
4723extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4724
4734struct k_pipe {
4735 unsigned char *buffer;
4736 size_t size;
4737 size_t bytes_used;
4738 size_t read_index;
4742 struct {
4743 _wait_q_t readers;
4744 _wait_q_t writers;
4750};
4751
4755#define K_PIPE_FLAG_ALLOC BIT(0)
4757#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4758 { \
4759 .buffer = pipe_buffer, \
4760 .size = pipe_buffer_size, \
4761 .bytes_used = 0, \
4762 .read_index = 0, \
4763 .write_index = 0, \
4764 .lock = {}, \
4765 .wait_q = { \
4766 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4767 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4768 }, \
4769 .flags = 0 \
4770 }
4771
4789#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4790 static unsigned char __noinit __aligned(pipe_align) \
4791 _k_pipe_buf_##name[pipe_buffer_size]; \
4792 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4793 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4794
4806void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4807
4820
4836__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4837
4856__syscall int k_pipe_put(struct k_pipe *pipe, void *data,
4857 size_t bytes_to_write, size_t *bytes_written,
4858 size_t min_xfer, k_timeout_t timeout);
4859
4879__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
4880 size_t bytes_to_read, size_t *bytes_read,
4881 size_t min_xfer, k_timeout_t timeout);
4882
4891__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
4892
4901__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
4902
4913__syscall void k_pipe_flush(struct k_pipe *pipe);
4914
4926__syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
4927
4934struct k_mem_slab {
4935 _wait_q_t wait_q;
4936 struct k_spinlock lock;
4937 uint32_t num_blocks;
4938 size_t block_size;
4939 char *buffer;
4940 char *free_list;
4941 uint32_t num_used;
4942#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
4943 uint32_t max_used;
4944#endif
4945
4947};
4948
4949#define Z_MEM_SLAB_INITIALIZER(obj, slab_buffer, slab_block_size, \
4950 slab_num_blocks) \
4951 { \
4952 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4953 .lock = {}, \
4954 .num_blocks = slab_num_blocks, \
4955 .block_size = slab_block_size, \
4956 .buffer = slab_buffer, \
4957 .free_list = NULL, \
4958 .num_used = 0, \
4959 }
4960
4961
4995#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
4996 char __noinit_named(k_mem_slab_buf_##name) \
4997 __aligned(WB_UP(slab_align)) \
4998 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4999 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5000 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5001 WB_UP(slab_block_size), slab_num_blocks)
5002
5017#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5018 static char __noinit_named(k_mem_slab_buf_##name) \
5019 __aligned(WB_UP(slab_align)) \
5020 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5021 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5022 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5023 WB_UP(slab_block_size), slab_num_blocks)
5024
5046extern int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5047 size_t block_size, uint32_t num_blocks);
5048
5071extern int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5073
5083extern void k_mem_slab_free(struct k_mem_slab *slab, void **mem);
5084
5095static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5096{
5097 return slab->num_used;
5098}
5099
5110static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5111{
5112#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5113 return slab->max_used;
5114#else
5115 ARG_UNUSED(slab);
5116 return 0;
5117#endif
5118}
5119
5130static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5131{
5132 return slab->num_blocks - slab->num_used;
5133}
5134
5142/* kernel synchronized heap struct */
5143
5144struct k_heap {
5146 _wait_q_t wait_q;
5148};
5149
5163void k_heap_init(struct k_heap *h, void *mem, size_t bytes);
5164
5184void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5186
5207void *k_heap_alloc(struct k_heap *h, size_t bytes,
5209
5220void k_heap_free(struct k_heap *h, void *mem);
5221
5222/* Hand-calculated minimum heap sizes needed to return a successful
5223 * 1-byte allocation. See details in lib/os/heap.[ch]
5224 */
5225#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5226
5243#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5244 char in_section \
5245 __aligned(8) /* CHUNK_UNIT */ \
5246 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5247 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5248 .heap = { \
5249 .init_mem = kheap_##name, \
5250 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5251 }, \
5252 }
5253
5268#define K_HEAP_DEFINE(name, bytes) \
5269 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5270 __noinit_named(kheap_buf_##name))
5271
5286#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5287 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5288
5317extern void *k_aligned_alloc(size_t align, size_t size);
5318
5329extern void *k_malloc(size_t size);
5330
5342extern void k_free(void *ptr);
5343
5355extern void *k_calloc(size_t nmemb, size_t size);
5356
5359/* polling API - PRIVATE */
5360
5361#ifdef CONFIG_POLL
5362#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5363#else
5364#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5365#endif
5366
5367/* private - types bit positions */
5368enum _poll_types_bits {
5369 /* can be used to ignore an event */
5370 _POLL_TYPE_IGNORE,
5371
5372 /* to be signaled by k_poll_signal_raise() */
5373 _POLL_TYPE_SIGNAL,
5374
5375 /* semaphore availability */
5376 _POLL_TYPE_SEM_AVAILABLE,
5377
5378 /* queue/FIFO/LIFO data availability */
5379 _POLL_TYPE_DATA_AVAILABLE,
5380
5381 /* msgq data availability */
5382 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5383
5384 _POLL_NUM_TYPES
5385};
5386
5387#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5388
5389/* private - states bit positions */
5390enum _poll_states_bits {
5391 /* default state when creating event */
5392 _POLL_STATE_NOT_READY,
5393
5394 /* signaled by k_poll_signal_raise() */
5395 _POLL_STATE_SIGNALED,
5396
5397 /* semaphore is available */
5398 _POLL_STATE_SEM_AVAILABLE,
5399
5400 /* data is available to read on queue/FIFO/LIFO */
5401 _POLL_STATE_DATA_AVAILABLE,
5402
5403 /* queue/FIFO/LIFO wait was cancelled */
5404 _POLL_STATE_CANCELLED,
5405
5406 /* data is available to read on a message queue */
5407 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5408
5409 _POLL_NUM_STATES
5410};
5411
5412#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5413
5414#define _POLL_EVENT_NUM_UNUSED_BITS \
5415 (32 - (0 \
5416 + 8 /* tag */ \
5417 + _POLL_NUM_TYPES \
5418 + _POLL_NUM_STATES \
5419 + 1 /* modes */ \
5420 ))
5421
5422/* end of polling API - PRIVATE */
5423
5424
5431/* Public polling API */
5432
5433/* public - values for k_poll_event.type bitfield */
5434#define K_POLL_TYPE_IGNORE 0
5435#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5436#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5437#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5438#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5439#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5440
5441/* public - polling modes */
5443 /* polling thread does not take ownership of objects when available */
5445
5448
5449/* public - values for k_poll_event.state bitfield */
5450#define K_POLL_STATE_NOT_READY 0
5451#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5452#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5453#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5454#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5455#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5456#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5457
5458/* public - poll signal object */
5462
5467 unsigned int signaled;
5468
5471};
5472
5473#define K_POLL_SIGNAL_INITIALIZER(obj) \
5474 { \
5475 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5476 .signaled = 0, \
5477 .result = 0, \
5478 }
5485 sys_dnode_t _node;
5486
5488 struct z_poller *poller;
5489
5492
5494 uint32_t type:_POLL_NUM_TYPES;
5495
5497 uint32_t state:_POLL_NUM_STATES;
5498
5501
5503 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5504
5506 union {
5507 void *obj;
5509 struct k_sem *sem;
5510 struct k_fifo *fifo;
5511 struct k_queue *queue;
5512 struct k_msgq *msgq;
5513 };
5514};
5515
5516#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5517 { \
5518 .poller = NULL, \
5519 .type = _event_type, \
5520 .state = K_POLL_STATE_NOT_READY, \
5521 .mode = _event_mode, \
5522 .unused = 0, \
5523 { \
5524 .obj = _event_obj, \
5525 }, \
5526 }
5527
5528#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5529 event_tag) \
5530 { \
5531 .tag = event_tag, \
5532 .type = _event_type, \
5533 .state = K_POLL_STATE_NOT_READY, \
5534 .mode = _event_mode, \
5535 .unused = 0, \
5536 { \
5537 .obj = _event_obj, \
5538 }, \
5539 }
5540
5556extern void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5557 int mode, void *obj);
5558
5602__syscall int k_poll(struct k_poll_event *events, int num_events,
5604
5613__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5614
5615/*
5616 * @brief Reset a poll signal object's state to unsignaled.
5617 *
5618 * @param sig A poll signal object
5619 */
5620__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5621
5632__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5633 unsigned int *signaled, int *result);
5634
5659__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5660
5664extern void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state);
5665
5686static inline void k_cpu_idle(void)
5687{
5688 arch_cpu_idle();
5689}
5690
5705static inline void k_cpu_atomic_idle(unsigned int key)
5706{
5708}
5709
5717#ifdef ARCH_EXCEPT
5718/* This architecture has direct support for triggering a CPU exception */
5719#define z_except_reason(reason) ARCH_EXCEPT(reason)
5720#else
5721
5722#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5723#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5724#else
5725#define __EXCEPT_LOC()
5726#endif
5727
5728/* NOTE: This is the implementation for arches that do not implement
5729 * ARCH_EXCEPT() to generate a real CPU exception.
5730 *
5731 * We won't have a real exception frame to determine the PC value when
5732 * the oops occurred, so print file and line number before we jump into
5733 * the fatal error handler.
5734 */
5735#define z_except_reason(reason) do { \
5736 __EXCEPT_LOC(); \
5737 z_fatal_error(reason, NULL); \
5738 } while (false)
5739
5740#endif /* _ARCH__EXCEPT */
5741
5753#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5754
5763#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5764
5765/*
5766 * private APIs that are utilized by one or more public APIs
5767 */
5768
5772extern void z_init_thread_base(struct _thread_base *thread_base,
5773 int priority, uint32_t initial_state,
5774 unsigned int options);
5775
5776#ifdef CONFIG_MULTITHREADING
5780extern void z_init_static_threads(void);
5781#else
5785#define z_init_static_threads() do { } while (false)
5786#endif
5787
5791extern bool z_is_thread_essential(void);
5792
5793#ifdef CONFIG_SMP
5794void z_smp_thread_init(void *arg, struct k_thread *thread);
5795void z_smp_thread_swap(void);
5796#endif
5797
5801extern void z_timer_expiration_handler(struct _timeout *t);
5802
5803#ifdef CONFIG_PRINTK
5811__syscall void k_str_out(char *c, size_t n);
5812#endif
5813
5834__syscall int k_float_disable(struct k_thread *thread);
5835
5874__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
5875
5885
5893
5904
5915
5924
5933
5934#ifdef __cplusplus
5935}
5936#endif
5937
5938#include <zephyr/tracing/tracing.h>
5939#include <syscalls/kernel.h>
5940
5941#endif /* !_ASMLANGUAGE */
5942
5943#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition: misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:44
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:46
static struct k_thread thread[2]
Definition: atomic.c:26
long atomic_t
Definition: atomic.h:22
ZTEST_BMEM int timeout
Definition: main.c:31
ZTEST_BMEM int count
Definition: main.c:33
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:131
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:198
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:176
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1668
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1633
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1649
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1683
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1609
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5686
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5705
struct _dnode sys_dnode_t
Definition: dlist.h:49
struct _dnode sys_dlist_t
Definition: dlist.h:48
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
void k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
void k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:323
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:982
static ZTEST_BMEM char buffer[8]
Test mailbox enhance capabilities.
Definition: test_mbox_api.c:566
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
Free memory allocated from a memory slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5095
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5110
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5130
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5442
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5444
@ K_POLL_NUM_MODES
Definition: kernel.h:5446
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:345
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:101
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:147
#define EINVAL
Definition: errno.h:61
#define EBUSY
Definition: errno.h:55
#define EALREADY
Definition: errno.h:105
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
void k_thread_system_pool_assign(struct k_thread *thread)
Assign the system heap as a thread's resource pool.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:338
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:431
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:522
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:95
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1390
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1374
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1533
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
static int k_delayed_work_cancel(struct k_delayed_work *work)
Definition: kernel.h:3900
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:3841
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:3812
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:3829
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
static k_ticks_t k_delayed_work_remaining_ticks(struct k_delayed_work *work)
Definition: kernel.h:3963
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int32_t k_delayed_work_remaining_get(struct k_delayed_work *work)
Definition: kernel.h:3947
static bool k_delayed_work_pending(struct k_delayed_work *work)
Definition: kernel.h:3941
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4091
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4068
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3050
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:3823
static bool k_work_pending(const struct k_work *work)
Definition: kernel.h:3849
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static int k_delayed_work_submit_to_queue(struct k_work_q *work_q, struct k_delayed_work *work, k_timeout_t delay)
Definition: kernel.h:3879
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:4046
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static int k_delayed_work_submit(struct k_delayed_work *work, k_timeout_t delay)
Definition: kernel.h:3890
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:3818
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:3835
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
static k_ticks_t k_delayed_work_expires_ticks(struct k_delayed_work *work)
Definition: kernel.h:3956
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
static void k_work_q_start(struct k_work_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio)
Definition: kernel.h:3855
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
static void k_delayed_work_init(struct k_delayed_work *work, k_work_handler_t handler)
Definition: kernel.h:3872
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:3987
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3624
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3631
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3638
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3618
flags
Definition: http_parser.h:131
state
Definition: http_parser_state.h:29
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:80
@ K_ISR
Definition: kernel.h:81
@ K_COOP_THREAD
Definition: kernel.h:82
@ K_PREEMPT_THREAD
Definition: kernel.h:83
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
static ZTEST_BMEM volatile int ret
Definition: k_float_disable.c:28
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition: kernel_structs.h:255
struct k_mem_slab ms
Definition: kobject.c:1325
struct k_mutex mutex
Definition: kobject.c:1327
struct k_thread t
Definition: kobject.c:1333
struct k_msgq msgq
Definition: test_msgq_contexts.c:12
char c
Definition: printk.c:71
void * ptr
Definition: printk.c:79
static struct k_work work[2]
Definition: main.c:16
struct _sfnode sys_sfnode_t
Definition: sflist.h:39
struct _sflist sys_sflist_t
Definition: sflist.h:46
struct _slist sys_slist_t
Definition: slist.h:40
struct _snode sys_snode_t
Definition: slist.h:33
char stack[2048]
Definition: main.c:22
static struct k_spinlock lock
Definition: spinlock_error_case.c:12
static k_spinlock_key_t key
Definition: spinlock_error_case.c:14
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INT32_TYPE__ int32_t
Definition: stdint.h:74
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__INT64_TYPE__ int64_t
Definition: stdint.h:75
Static init entry structure for each device driver or services.
Definition: init.h:43
Definition: kernel.h:2807
_wait_q_t wait_q
Definition: kernel.h:2808
Definition: kernel.h:3863
struct k_work_delayable work
Definition: kernel.h:3864
Definition: kernel.h:2072
struct k_spinlock lock
Definition: kernel.h:2075
uint32_t events
Definition: kernel.h:2074
_wait_q_t wait_q
Definition: kernel.h:2073
Definition: kernel.h:2186
futex structure
Definition: kernel.h:1993
atomic_t val
Definition: kernel.h:1994
Definition: kernel.h:5144
struct k_spinlock lock
Definition: kernel.h:5147
struct sys_heap heap
Definition: kernel.h:5145
_wait_q_t wait_q
Definition: kernel.h:5146
Definition: kernel.h:2420
Mailbox Message Structure.
Definition: kernel.h:4579
struct k_mem_block tx_block
Definition: kernel.h:4591
k_tid_t tx_target_thread
Definition: kernel.h:4595
void * tx_data
Definition: kernel.h:4587
k_tid_t rx_source_thread
Definition: kernel.h:4593
uint32_t info
Definition: kernel.h:4585
size_t size
Definition: kernel.h:4583
Mailbox Structure.
Definition: kernel.h:4607
_wait_q_t tx_msg_queue
Definition: kernel.h:4609
struct k_spinlock lock
Definition: kernel.h:4612
_wait_q_t rx_msg_queue
Definition: kernel.h:4611
Definition: mempool_heap.h:24
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4360
uint32_t used_msgs
Definition: kernel.h:4366
size_t msg_size
Definition: kernel.h:4362
uint32_t max_msgs
Definition: kernel.h:4364
Message Queue Structure.
Definition: kernel.h:4305
size_t msg_size
Definition: kernel.h:4311
char * read_ptr
Definition: kernel.h:4319
uint32_t used_msgs
Definition: kernel.h:4323
char * buffer_end
Definition: kernel.h:4317
struct k_spinlock lock
Definition: kernel.h:4309
char * write_ptr
Definition: kernel.h:4321
char * buffer_start
Definition: kernel.h:4315
uint8_t flags
Definition: kernel.h:4325
_wait_q_t wait_q
Definition: kernel.h:4307
uint32_t max_msgs
Definition: kernel.h:4313
Definition: kernel.h:2699
uint32_t lock_count
Definition: kernel.h:2706
_wait_q_t wait_q
Definition: kernel.h:2701
int owner_orig_prio
Definition: kernel.h:2709
struct k_thread * owner
Definition: kernel.h:2703
Definition: kernel.h:4734
uint8_t flags
Definition: kernel.h:4747
struct k_pipe::@150 wait_q
_wait_q_t readers
Definition: kernel.h:4743
size_t write_index
Definition: kernel.h:4739
size_t bytes_used
Definition: kernel.h:4737
struct k_spinlock lock
Definition: kernel.h:4740
_wait_q_t writers
Definition: kernel.h:4744
size_t size
Definition: kernel.h:4736
unsigned char * buffer
Definition: kernel.h:4735
size_t read_index
Definition: kernel.h:4738
Poll Event.
Definition: kernel.h:5483
struct k_poll_signal * signal
Definition: kernel.h:5508
uint32_t tag
Definition: kernel.h:5491
struct k_fifo * fifo
Definition: kernel.h:5510
struct k_msgq * msgq
Definition: kernel.h:5512
struct k_queue * queue
Definition: kernel.h:5511
uint32_t unused
Definition: kernel.h:5503
uint32_t type
Definition: kernel.h:5494
struct k_sem * sem
Definition: kernel.h:5509
uint32_t state
Definition: kernel.h:5497
uint32_t mode
Definition: kernel.h:5500
struct z_poller * poller
Definition: kernel.h:5488
void * obj
Definition: kernel.h:5507
Definition: kernel.h:5459
sys_dlist_t poll_events
Definition: kernel.h:5461
int result
Definition: kernel.h:5470
unsigned int signaled
Definition: kernel.h:5467
Kernel Spin Lock.
Definition: spinlock.h:42
Definition: thread.h:178
Definition: thread.h:231
struct _thread_base base
Definition: thread.h:233
struct k_heap * resource_pool
Definition: thread.h:311
struct __thread_entry entry
Definition: thread.h:257
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3670
struct _timeout timeout
Definition: kernel.h:3675
struct k_work_q * queue
Definition: kernel.h:3678
struct k_work work
Definition: kernel.h:3672
A structure used to hold work until it can be processed.
Definition: kernel.h:3789
sys_slist_t pending
Definition: kernel.h:3798
_wait_q_t drainq
Definition: kernel.h:3804
_wait_q_t notifyq
Definition: kernel.h:3801
uint32_t flags
Definition: kernel.h:3807
struct k_thread thread
Definition: kernel.h:3791
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3766
const char * name
Definition: kernel.h:3771
bool no_yield
Definition: kernel.h:3785
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3753
struct z_work_canceller canceller
Definition: kernel.h:3756
struct z_work_flusher flusher
Definition: kernel.h:3755
A structure used to submit work.
Definition: kernel.h:3642
k_work_handler_t handler
Definition: kernel.h:3651
uint32_t flags
Definition: kernel.h:3662
struct k_work_q * queue
Definition: kernel.h:3654
sys_snode_t node
Definition: kernel.h:3648
Definition: errno.c:37
Definition: sys_heap.h:55
static fdata_t data[2]
Definition: test_fifo_contexts.c:15
static struct k_mbox mbox
Definition: test_mbox_api.c:28
static struct k_pipe pipe
Definition: test_mutex_error.c:18
struct k_queue queue
Definition: test_queue_contexts.c:17
static int init_prio
Definition: test_sched_timeslice_and_lock.c:15
static ZTEST_BMEM struct thread_data expected
static uint64_t k_ticks_to_ms_floor64(uint64_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1102
static uint32_t k_ticks_to_ms_floor32(uint32_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1088
static struct k_timer timer[3]
Definition: timeout_order.c:13
static struct k_sem sem[3]
Definition: timeout_order.c:14
static void handler(struct k_timer *timer)
Definition: main.c:19
static const intptr_t user_data[5]
Definition: main.c:590
Macros to abstract toolchain specific capabilities.
static struct k_work_delayable dwork
Definition: main.c:48