Zephyr Project API  3.2.0
A Scalable Open Source RTOS
device_mmio.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2020 Intel Corporation.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 *
6 * Definitions and helper macros for managing driver memory-mapped
7 * input/output (MMIO) regions appropriately in either RAM or ROM.
8 *
9 * In most cases drivers will just want to include device.h, but
10 * including this separately may be needed for arch-level driver code
11 * which uses the DEVICE_MMIO_TOPLEVEL variants and including the
12 * main device.h would introduce header dependency loops due to that
13 * header's reliance on kernel.h.
14 */
15#ifndef ZEPHYR_INCLUDE_SYS_DEVICE_MMIO_H
16#define ZEPHYR_INCLUDE_SYS_DEVICE_MMIO_H
17
18#include <zephyr/toolchain.h>
20
27/* Storing MMIO addresses in RAM is a system-wide decision based on
28 * configuration. This is just used to simplify some other definitions.
29 *
30 * If we have an MMU enabled, all physical MMIO regions must be mapped into
31 * the kernel's virtual address space at runtime, this is a hard requirement.
32 *
33 * If we have PCIE enabled, this does mean that non-PCIE drivers may waste
34 * a bit of RAM, but systems with PCI express are not RAM constrained.
35 */
36#if defined(CONFIG_MMU) || defined(CONFIG_PCIE)
37#define DEVICE_MMIO_IS_IN_RAM
38#endif
39
40#ifndef _ASMLANGUAGE
41#include <stdint.h>
42#include <stddef.h>
44#include <zephyr/sys/sys_io.h>
45
46#ifdef DEVICE_MMIO_IS_IN_RAM
47/* Store the physical address and size from DTS, we'll memory
48 * map into the virtual address space at runtime. This is not applicable
49 * to PCIe devices, which must query the bus for BAR information.
50 */
51struct z_device_mmio_rom {
53 uintptr_t phys_addr;
54
56 size_t size;
57};
58
59#define Z_DEVICE_MMIO_ROM_INITIALIZER(node_id) \
60 { \
61 .phys_addr = DT_REG_ADDR(node_id), \
62 .size = DT_REG_SIZE(node_id) \
63 }
64
65#define Z_DEVICE_MMIO_NAMED_ROM_INITIALIZER(name, node_id) \
66 { \
67 .phys_addr = DT_REG_ADDR_BY_NAME(node_id, name), \
68 .size = DT_REG_SIZE_BY_NAME(node_id, name) \
69 }
70
91__boot_func
92static inline void device_map(mm_reg_t *virt_addr, uintptr_t phys_addr,
93 size_t size, uint32_t flags)
94{
95#ifdef CONFIG_MMU
96 /* Pass along flags and add that we want supervisor mode
97 * read-write access.
98 */
99 z_phys_map((uint8_t **)virt_addr, phys_addr, size,
101#else
102 ARG_UNUSED(size);
103 ARG_UNUSED(flags);
104
105 *virt_addr = phys_addr;
106#endif /* CONFIG_MMU */
107}
108#else
109/* No MMU or PCIe. Just store the address from DTS and treat as a linear
110 * address
111 */
112struct z_device_mmio_rom {
114 mm_reg_t addr;
115};
116
117#define Z_DEVICE_MMIO_ROM_INITIALIZER(node_id) \
118 { \
119 .addr = DT_REG_ADDR(node_id) \
120 }
121
122#define Z_DEVICE_MMIO_NAMED_ROM_INITIALIZER(name, node_id) \
123 { \
124 .addr = DT_REG_ADDR_BY_NAME(node_id, name) \
125 }
126
127#endif /* DEVICE_MMIO_IS_IN_RAM */
128#endif /* !_ASMLANGUAGE */
168#ifdef DEVICE_MMIO_IS_IN_RAM
169#define DEVICE_MMIO_RAM mm_reg_t _mmio
170#else
171#define DEVICE_MMIO_RAM
172#endif
173
174#ifdef DEVICE_MMIO_IS_IN_RAM
185#define DEVICE_MMIO_RAM_PTR(device) (mm_reg_t *)((device)->data)
186#endif /* DEVICE_MMIO_IS_IN_RAM */
187
214#define DEVICE_MMIO_ROM struct z_device_mmio_rom _mmio
215
225#define DEVICE_MMIO_ROM_PTR(dev) \
226 ((struct z_device_mmio_rom *)((dev)->config))
227
246#define DEVICE_MMIO_ROM_INIT(node_id) \
247 ._mmio = Z_DEVICE_MMIO_ROM_INITIALIZER(node_id)
248
265#ifdef DEVICE_MMIO_IS_IN_RAM
266#define DEVICE_MMIO_MAP(dev, flags) \
267 device_map(DEVICE_MMIO_RAM_PTR(dev), \
268 DEVICE_MMIO_ROM_PTR(dev)->phys_addr, \
269 DEVICE_MMIO_ROM_PTR(dev)->size, \
270 (flags))
271#else
272#define DEVICE_MMIO_MAP(dev, flags) do { } while (false)
273#endif
274
294#ifdef DEVICE_MMIO_IS_IN_RAM
295#define DEVICE_MMIO_GET(dev) (*DEVICE_MMIO_RAM_PTR(dev))
296#else
297#define DEVICE_MMIO_GET(dev) (DEVICE_MMIO_ROM_PTR(dev)->addr)
298#endif
341#ifdef DEVICE_MMIO_IS_IN_RAM
342#define DEVICE_MMIO_NAMED_RAM(name) mm_reg_t name
343#else
344#define DEVICE_MMIO_NAMED_RAM(name)
345#endif /* DEVICE_MMIO_IS_IN_RAM */
346
347#ifdef DEVICE_MMIO_IS_IN_RAM
358#define DEVICE_MMIO_NAMED_RAM_PTR(dev, name) \
359 (&(DEV_DATA(dev)->name))
360#endif /* DEVICE_MMIO_IS_IN_RAM */
361
393#define DEVICE_MMIO_NAMED_ROM(name) struct z_device_mmio_rom name
394
407#define DEVICE_MMIO_NAMED_ROM_PTR(dev, name) (&(DEV_CFG(dev)->name))
408
431#define DEVICE_MMIO_NAMED_ROM_INIT(name, node_id) \
432 .name = Z_DEVICE_MMIO_ROM_INITIALIZER(node_id)
433
472#define DEVICE_MMIO_NAMED_ROM_INIT_BY_NAME(name, node_id) \
473 .name = Z_DEVICE_MMIO_NAMED_ROM_INITIALIZER(name, node_id)
474
501#ifdef DEVICE_MMIO_IS_IN_RAM
502#define DEVICE_MMIO_NAMED_MAP(dev, name, flags) \
503 device_map(DEVICE_MMIO_NAMED_RAM_PTR((dev), name), \
504 (DEVICE_MMIO_NAMED_ROM_PTR((dev), name)->phys_addr), \
505 (DEVICE_MMIO_NAMED_ROM_PTR((dev), name)->size), \
506 (flags))
507#else
508#define DEVICE_MMIO_NAMED_MAP(dev, name, flags) do { } while (false)
509#endif
510
532#ifdef DEVICE_MMIO_IS_IN_RAM
533#define DEVICE_MMIO_NAMED_GET(dev, name) \
534 (*DEVICE_MMIO_NAMED_RAM_PTR((dev), name))
535#else
536#define DEVICE_MMIO_NAMED_GET(dev, name) \
537 ((DEVICE_MMIO_NAMED_ROM_PTR((dev), name))->addr)
538#endif /* DEVICE_MMIO_IS_IN_RAM */
539
559 #define Z_TOPLEVEL_ROM_NAME(name) _CONCAT(z_mmio_rom__, name)
560 #define Z_TOPLEVEL_RAM_NAME(name) _CONCAT(z_mmio_ram__, name)
561
577#ifdef DEVICE_MMIO_IS_IN_RAM
578#define DEVICE_MMIO_TOPLEVEL(name, node_id) \
579 __pinned_bss \
580 mm_reg_t Z_TOPLEVEL_RAM_NAME(name); \
581 __pinned_rodata \
582 const struct z_device_mmio_rom Z_TOPLEVEL_ROM_NAME(name) = \
583 Z_DEVICE_MMIO_ROM_INITIALIZER(node_id)
584#else
585#define DEVICE_MMIO_TOPLEVEL(name, node_id) \
586 __pinned_rodata \
587 const struct z_device_mmio_rom Z_TOPLEVEL_ROM_NAME(name) = \
588 Z_DEVICE_MMIO_ROM_INITIALIZER(node_id)
589#endif /* DEVICE_MMIO_IS_IN_RAM */
590
605#ifdef DEVICE_MMIO_IS_IN_RAM
606#define DEVICE_MMIO_TOPLEVEL_DECLARE(name) \
607 extern mm_reg_t Z_TOPLEVEL_RAM_NAME(name); \
608 extern const struct z_device_mmio_rom Z_TOPLEVEL_ROM_NAME(name)
609#else
610#define DEVICE_MMIO_TOPLEVEL_DECLARE(name) \
611 extern const struct z_device_mmio_rom Z_TOPLEVEL_ROM_NAME(name)
612#endif /* DEVICE_MMIO_IS_IN_RAM */
613
628#ifdef DEVICE_MMIO_IS_IN_RAM
629#define DEVICE_MMIO_TOPLEVEL_STATIC(name, node_id) \
630 __pinned_bss \
631 static mm_reg_t Z_TOPLEVEL_RAM_NAME(name); \
632 __pinned_rodata \
633 static const struct z_device_mmio_rom Z_TOPLEVEL_ROM_NAME(name) = \
634 Z_DEVICE_MMIO_ROM_INITIALIZER(node_id)
635#else
636#define DEVICE_MMIO_TOPLEVEL_STATIC(name, node_id) \
637 __pinned_rodata \
638 static const struct z_device_mmio_rom Z_TOPLEVEL_ROM_NAME(name) = \
639 Z_DEVICE_MMIO_ROM_INITIALIZER(node_id)
640#endif /* DEVICE_MMIO_IS_IN_RAM */
641
642#ifdef DEVICE_MMIO_IS_IN_RAM
650#define DEVICE_MMIO_TOPLEVEL_RAM_PTR(name) &Z_TOPLEVEL_RAM_NAME(name)
651#endif /* DEVICE_MMIO_IS_IN_RAM */
652
659#define DEVICE_MMIO_TOPLEVEL_ROM_PTR(name) &Z_TOPLEVEL_ROM_NAME(name)
660
682#ifdef DEVICE_MMIO_IS_IN_RAM
683#define DEVICE_MMIO_TOPLEVEL_MAP(name, flags) \
684 device_map(&Z_TOPLEVEL_RAM_NAME(name), \
685 Z_TOPLEVEL_ROM_NAME(name).phys_addr, \
686 Z_TOPLEVEL_ROM_NAME(name).size, flags)
687#else
688#define DEVICE_MMIO_TOPLEVEL_MAP(name, flags) do { } while (false)
689#endif
690
701#ifdef DEVICE_MMIO_IS_IN_RAM
702#define DEVICE_MMIO_TOPLEVEL_GET(name) \
703 ((mm_reg_t)Z_TOPLEVEL_RAM_NAME(name))
704#else
705#define DEVICE_MMIO_TOPLEVEL_GET(name) \
706 ((mm_reg_t)Z_TOPLEVEL_ROM_NAME(name).addr)
707#endif
710#endif /* ZEPHYR_INCLUDE_SYS_DEVICE_MMIO_H */
static __boot_func void device_map(mm_reg_t *virt_addr, uintptr_t phys_addr, size_t size, uint32_t flags)
Definition: device_mmio.h:92
flags
Definition: http_parser.h:131
#define K_MEM_PERM_RW
Definition: mem_manage.h:49
Definitions of various linker Sections.
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
uintptr_t mm_reg_t
Definition: sys_io.h:20
Macros to abstract toolchain specific capabilities.