Zephyr Project API  3.2.0
A Scalable Open Source RTOS
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
24
25#ifdef __cplusplus
26extern "C" {
27#endif
28
29/*
30 * Zephyr currently assumes the size of a couple standard types to simplify
31 * print string formats. Let's make sure this doesn't change without notice.
32 */
33BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
34BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
35BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
36
44#define K_ANY NULL
45#define K_END NULL
46
47#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
48#error Zero available thread priorities defined!
49#endif
50
51#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
52#define K_PRIO_PREEMPT(x) (x)
53
54#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
55#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
56#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
57#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
58#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
59
60#ifdef CONFIG_POLL
61#define _POLL_EVENT_OBJ_INIT(obj) \
62 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
63#define _POLL_EVENT sys_dlist_t poll_events
64#else
65#define _POLL_EVENT_OBJ_INIT(obj)
66#define _POLL_EVENT
67#endif
68
69struct k_thread;
70struct k_mutex;
71struct k_sem;
72struct k_msgq;
73struct k_mbox;
74struct k_pipe;
75struct k_queue;
76struct k_fifo;
77struct k_lifo;
78struct k_stack;
79struct k_mem_slab;
80struct k_timer;
81struct k_poll_event;
82struct k_poll_signal;
83struct k_mem_domain;
84struct k_mem_partition;
85struct k_futex;
86struct k_event;
87
89 K_ISR = 0,
92};
93
94/* private, used by k_poll and k_work_poll */
95struct k_work_poll;
96typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
97
103typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
104 void *user_data);
105
122
151 k_thread_user_cb_t user_cb, void *user_data);
152
161#endif /* !_ASMLANGUAGE */
162
163
164/*
165 * Thread user options. May be needed by assembly code. Common part uses low
166 * bits, arch-specific use high bits.
167 */
168
172#define K_ESSENTIAL (BIT(0))
173
174#if defined(CONFIG_FPU_SHARING)
184#define K_FP_REGS (BIT(1))
185#endif
186
193#define K_USER (BIT(2))
194
203#define K_INHERIT_PERMS (BIT(3))
204
214#define K_CALLBACK_STATE (BIT(4))
215
216#ifdef CONFIG_X86
217/* x86 Bitmask definitions for threads user options */
218
219#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
229#define K_SSE_REGS (BIT(7))
230#endif
231#endif
232
233/* end - thread options */
234
235#if !defined(_ASMLANGUAGE)
284__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
286 size_t stack_size,
288 void *p1, void *p2, void *p3,
289 int prio, uint32_t options, k_timeout_t delay);
290
313 void *p1, void *p2,
314 void *p3);
315
329#define k_thread_access_grant(thread, ...) \
330 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
331
346static inline void k_thread_heap_assign(struct k_thread *thread,
347 struct k_heap *heap)
348{
349 thread->resource_pool = heap;
350}
351
352#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
373__syscall int k_thread_stack_space_get(const struct k_thread *thread,
374 size_t *unused_ptr);
375#endif
376
377#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
391#endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */
392
413
428
440{
441 return k_sleep(Z_TIMEOUT_MS(ms));
442}
443
460
473__syscall void k_busy_wait(uint32_t usec_to_wait);
474
486bool k_can_yield(void);
487
495__syscall void k_yield(void);
496
506__syscall void k_wakeup(k_tid_t thread);
507
515__attribute_const__
516__syscall k_tid_t z_current_get(void);
517
518#ifdef CONFIG_THREAD_LOCAL_STORAGE
519/* Thread-local cache of current thread ID, set in z_thread_entry() */
520extern __thread k_tid_t z_tls_current;
521#endif
522
529__attribute_const__
530static inline k_tid_t k_current_get(void)
531{
532#ifdef CONFIG_THREAD_LOCAL_STORAGE
533 return z_tls_current;
534#else
535 return z_current_get();
536#endif
537}
538
563
564
575
576extern k_ticks_t z_timeout_expires(const struct _timeout *timeout);
577extern k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
578
579#ifdef CONFIG_SYS_CLOCK_EXISTS
580
589
590static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
591 const struct k_thread *t)
592{
593 return z_timeout_expires(&t->base.timeout);
594}
595
604
605static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
606 const struct k_thread *t)
607{
608 return z_timeout_remaining(&t->base.timeout);
609}
610
611#endif /* CONFIG_SYS_CLOCK_EXISTS */
612
617/* timeout has timed out and is not on _timeout_q anymore */
618#define _EXPIRED (-2)
619
620struct _static_thread_data {
621 struct k_thread *init_thread;
622 k_thread_stack_t *init_stack;
623 unsigned int init_stack_size;
625 void *init_p1;
626 void *init_p2;
627 void *init_p3;
628 int init_prio;
629 uint32_t init_options;
630 int32_t init_delay;
631 void (*init_abort)(void);
632 const char *init_name;
633};
634
635#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
636 entry, p1, p2, p3, \
637 prio, options, delay, abort, tname) \
638 { \
639 .init_thread = (thread), \
640 .init_stack = (stack), \
641 .init_stack_size = (stack_size), \
642 .init_entry = (k_thread_entry_t)entry, \
643 .init_p1 = (void *)p1, \
644 .init_p2 = (void *)p2, \
645 .init_p3 = (void *)p3, \
646 .init_prio = (prio), \
647 .init_options = (options), \
648 .init_delay = (delay), \
649 .init_abort = (abort), \
650 .init_name = STRINGIFY(tname), \
651 }
652
686#define K_THREAD_DEFINE(name, stack_size, \
687 entry, p1, p2, p3, \
688 prio, options, delay) \
689 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
690 struct k_thread _k_thread_obj_##name; \
691 STRUCT_SECTION_ITERABLE(_static_thread_data, _k_thread_data_##name) = \
692 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
693 _k_thread_stack_##name, stack_size, \
694 entry, p1, p2, p3, prio, options, delay, \
695 NULL, name); \
696 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
697
708
734__syscall void k_thread_priority_set(k_tid_t thread, int prio);
735
736
737#ifdef CONFIG_SCHED_DEADLINE
770__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
771#endif
772
773#ifdef CONFIG_SCHED_CPU_MASK
787
801
815
829
841#endif
842
859
871
898extern void k_sched_time_slice_set(int32_t slice, int prio);
899
938void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
939 k_thread_timeslice_fn_t expired, void *data);
940
959extern bool k_is_in_isr(void);
960
977__syscall int k_is_preempt_thread(void);
978
990static inline bool k_is_pre_kernel(void)
991{
992 extern bool z_sys_post_kernel; /* in init.c */
993
994 return !z_sys_post_kernel;
995}
996
1022extern void k_sched_lock(void);
1023
1031extern void k_sched_unlock(void);
1032
1045__syscall void k_thread_custom_data_set(void *value);
1046
1054__syscall void *k_thread_custom_data_get(void);
1055
1069__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1070
1080
1092__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1093 size_t size);
1094
1107const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1108
1126#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1127
1140#define K_NSEC(t) Z_TIMEOUT_NS(t)
1141
1154#define K_USEC(t) Z_TIMEOUT_US(t)
1155
1166#define K_CYC(t) Z_TIMEOUT_CYC(t)
1167
1178#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1179
1190#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1191
1202#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1203
1214#define K_MINUTES(m) K_SECONDS((m) * 60)
1215
1226#define K_HOURS(h) K_MINUTES((h) * 60)
1227
1236#define K_FOREVER Z_FOREVER
1237
1238#ifdef CONFIG_TIMEOUT_64BIT
1239
1251#define K_TIMEOUT_ABS_TICKS(t) \
1252 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1253
1265#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1266
1279#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1280
1293#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1294
1307#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1308
1309#endif
1310
1319struct k_timer {
1320 /*
1321 * _timeout structure must be first here if we want to use
1322 * dynamic timer allocation. timeout.node is used in the double-linked
1323 * list of free timers
1324 */
1325 struct _timeout timeout;
1326
1327 /* wait queue for the (single) thread waiting on this timer */
1328 _wait_q_t wait_q;
1329
1330 /* runs in ISR context */
1331 void (*expiry_fn)(struct k_timer *timer);
1332
1333 /* runs in the context of the thread that calls k_timer_stop() */
1334 void (*stop_fn)(struct k_timer *timer);
1335
1336 /* timer period */
1337 k_timeout_t period;
1338
1339 /* timer status */
1340 uint32_t status;
1341
1342 /* user-specific data, also used to support legacy features */
1343 void *user_data;
1344
1346};
1347
1348#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1349 { \
1350 .timeout = { \
1351 .node = {},\
1352 .fn = z_timer_expiration_handler, \
1353 .dticks = 0, \
1354 }, \
1355 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1356 .expiry_fn = expiry, \
1357 .stop_fn = stop, \
1358 .status = 0, \
1359 .user_data = 0, \
1360 }
1361
1382typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1383
1398typedef void (*k_timer_stop_t)(struct k_timer *timer);
1399
1411#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1412 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1413 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1414
1424extern void k_timer_init(struct k_timer *timer,
1425 k_timer_expiry_t expiry_fn,
1426 k_timer_stop_t stop_fn);
1427
1442__syscall void k_timer_start(struct k_timer *timer,
1443 k_timeout_t duration, k_timeout_t period);
1444
1461__syscall void k_timer_stop(struct k_timer *timer);
1462
1475__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1476
1494__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1495
1496#ifdef CONFIG_SYS_CLOCK_EXISTS
1497
1508__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1509
1510static inline k_ticks_t z_impl_k_timer_expires_ticks(
1511 const struct k_timer *timer)
1512{
1513 return z_timeout_expires(&timer->timeout);
1514}
1515
1523__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1524
1525static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1526 const struct k_timer *timer)
1527{
1528 return z_timeout_remaining(&timer->timeout);
1529}
1530
1541static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1542{
1544}
1545
1546#endif /* CONFIG_SYS_CLOCK_EXISTS */
1547
1560__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1561
1565static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1566 void *user_data)
1567{
1568 timer->user_data = user_data;
1569}
1570
1578__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1579
1580static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1581{
1582 return timer->user_data;
1583}
1584
1602__syscall int64_t k_uptime_ticks(void);
1603
1617static inline int64_t k_uptime_get(void)
1618{
1620}
1621
1641static inline uint32_t k_uptime_get_32(void)
1642{
1643 return (uint32_t)k_uptime_get();
1644}
1645
1657static inline int64_t k_uptime_delta(int64_t *reftime)
1658{
1659 int64_t uptime, delta;
1660
1661 uptime = k_uptime_get();
1662 delta = uptime - *reftime;
1663 *reftime = uptime;
1664
1665 return delta;
1666}
1667
1676static inline uint32_t k_cycle_get_32(void)
1677{
1678 return arch_k_cycle_get_32();
1679}
1680
1691static inline uint64_t k_cycle_get_64(void)
1692{
1693 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1694 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1695 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1696 return 0;
1697 }
1698
1699 return arch_k_cycle_get_64();
1700}
1701
1710struct k_queue {
1711 sys_sflist_t data_q;
1712 struct k_spinlock lock;
1713 _wait_q_t wait_q;
1714
1715 _POLL_EVENT;
1716
1718};
1719
1720#define Z_QUEUE_INITIALIZER(obj) \
1721 { \
1722 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1723 .lock = { }, \
1724 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1725 _POLL_EVENT_OBJ_INIT(obj) \
1726 }
1727
1728extern void *z_queue_node_peek(sys_sfnode_t *node, bool needs_free);
1729
1747__syscall void k_queue_init(struct k_queue *queue);
1748
1762__syscall void k_queue_cancel_wait(struct k_queue *queue);
1763
1776extern void k_queue_append(struct k_queue *queue, void *data);
1777
1794__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1795
1808extern void k_queue_prepend(struct k_queue *queue, void *data);
1809
1826__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1827
1841extern void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1842
1861extern int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
1862
1878extern int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
1879
1898__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
1899
1916bool k_queue_remove(struct k_queue *queue, void *data);
1917
1932bool k_queue_unique_append(struct k_queue *queue, void *data);
1933
1947__syscall int k_queue_is_empty(struct k_queue *queue);
1948
1949static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
1950{
1951 return (int)sys_sflist_is_empty(&queue->data_q);
1952}
1953
1963__syscall void *k_queue_peek_head(struct k_queue *queue);
1964
1974__syscall void *k_queue_peek_tail(struct k_queue *queue);
1975
1985#define K_QUEUE_DEFINE(name) \
1986 STRUCT_SECTION_ITERABLE(k_queue, name) = \
1987 Z_QUEUE_INITIALIZER(name)
1988
1991#ifdef CONFIG_USERSPACE
2001struct k_futex {
2003};
2004
2012struct z_futex_data {
2013 _wait_q_t wait_q;
2014 struct k_spinlock lock;
2015};
2016
2017#define Z_FUTEX_DATA_INITIALIZER(obj) \
2018 { \
2019 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2020 }
2021
2047__syscall int k_futex_wait(struct k_futex *futex, int expected,
2049
2064__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2065
2067#endif
2068
2080struct k_event {
2081 _wait_q_t wait_q;
2084};
2085
2086#define Z_EVENT_INITIALIZER(obj) \
2087 { \
2088 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2089 .events = 0 \
2090 }
2091
2099__syscall void k_event_init(struct k_event *event);
2100
2114__syscall void k_event_post(struct k_event *event, uint32_t events);
2115
2129__syscall void k_event_set(struct k_event *event, uint32_t events);
2130
2143__syscall void k_event_set_masked(struct k_event *event, uint32_t events,
2144 uint32_t events_mask);
2145
2167__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2168 bool reset, k_timeout_t timeout);
2169
2191__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2192 bool reset, k_timeout_t timeout);
2193
2203#define K_EVENT_DEFINE(name) \
2204 STRUCT_SECTION_ITERABLE(k_event, name) = \
2205 Z_EVENT_INITIALIZER(name);
2206
2209struct k_fifo {
2210 struct k_queue _queue;
2211};
2212
2216#define Z_FIFO_INITIALIZER(obj) \
2217 { \
2218 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2219 }
2220
2238#define k_fifo_init(fifo) \
2239 ({ \
2240 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2241 k_queue_init(&(fifo)->_queue); \
2242 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2243 })
2244
2256#define k_fifo_cancel_wait(fifo) \
2257 ({ \
2258 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2259 k_queue_cancel_wait(&(fifo)->_queue); \
2260 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2261 })
2262
2275#define k_fifo_put(fifo, data) \
2276 ({ \
2277 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2278 k_queue_append(&(fifo)->_queue, data); \
2279 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2280 })
2281
2298#define k_fifo_alloc_put(fifo, data) \
2299 ({ \
2300 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2301 int ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2302 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, ret); \
2303 ret; \
2304 })
2305
2320#define k_fifo_put_list(fifo, head, tail) \
2321 ({ \
2322 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2323 k_queue_append_list(&(fifo)->_queue, head, tail); \
2324 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2325 })
2326
2340#define k_fifo_put_slist(fifo, list) \
2341 ({ \
2342 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2343 k_queue_merge_slist(&(fifo)->_queue, list); \
2344 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2345 })
2346
2364#define k_fifo_get(fifo, timeout) \
2365 ({ \
2366 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2367 void *ret = k_queue_get(&(fifo)->_queue, timeout); \
2368 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, ret); \
2369 ret; \
2370 })
2371
2385#define k_fifo_is_empty(fifo) \
2386 k_queue_is_empty(&(fifo)->_queue)
2387
2401#define k_fifo_peek_head(fifo) \
2402 ({ \
2403 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2404 void *ret = k_queue_peek_head(&(fifo)->_queue); \
2405 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, ret); \
2406 ret; \
2407 })
2408
2420#define k_fifo_peek_tail(fifo) \
2421 ({ \
2422 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2423 void *ret = k_queue_peek_tail(&(fifo)->_queue); \
2424 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, ret); \
2425 ret; \
2426 })
2427
2437#define K_FIFO_DEFINE(name) \
2438 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_fifo, name) = \
2439 Z_FIFO_INITIALIZER(name)
2440
2443struct k_lifo {
2444 struct k_queue _queue;
2445};
2446
2451#define Z_LIFO_INITIALIZER(obj) \
2452 { \
2453 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2454 }
2455
2473#define k_lifo_init(lifo) \
2474 ({ \
2475 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2476 k_queue_init(&(lifo)->_queue); \
2477 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2478 })
2479
2492#define k_lifo_put(lifo, data) \
2493 ({ \
2494 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2495 k_queue_prepend(&(lifo)->_queue, data); \
2496 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2497 })
2498
2515#define k_lifo_alloc_put(lifo, data) \
2516 ({ \
2517 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2518 int ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2519 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, ret); \
2520 ret; \
2521 })
2522
2540#define k_lifo_get(lifo, timeout) \
2541 ({ \
2542 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2543 void *ret = k_queue_get(&(lifo)->_queue, timeout); \
2544 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, ret); \
2545 ret; \
2546 })
2547
2557#define K_LIFO_DEFINE(name) \
2558 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_lifo, name) = \
2559 Z_LIFO_INITIALIZER(name)
2560
2566#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2567
2568typedef uintptr_t stack_data_t;
2569
2570struct k_stack {
2571 _wait_q_t wait_q;
2572 struct k_spinlock lock;
2573 stack_data_t *base, *next, *top;
2574
2575 uint8_t flags;
2576
2578};
2579
2580#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2581 { \
2582 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2583 .base = stack_buffer, \
2584 .next = stack_buffer, \
2585 .top = stack_buffer + stack_num_entries, \
2586 }
2587
2607void k_stack_init(struct k_stack *stack,
2608 stack_data_t *buffer, uint32_t num_entries);
2609
2610
2625__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2626 uint32_t num_entries);
2627
2639int k_stack_cleanup(struct k_stack *stack);
2640
2654__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2655
2676__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2678
2689#define K_STACK_DEFINE(name, stack_num_entries) \
2690 stack_data_t __noinit \
2691 _k_stack_buf_##name[stack_num_entries]; \
2692 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2693 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2694 stack_num_entries)
2695
2702struct k_work;
2703struct k_work_q;
2704struct k_work_queue_config;
2705extern struct k_work_q k_sys_work_q;
2706
2721struct k_mutex {
2723 _wait_q_t wait_q;
2726
2729
2732
2734};
2735
2739#define Z_MUTEX_INITIALIZER(obj) \
2740 { \
2741 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2742 .owner = NULL, \
2743 .lock_count = 0, \
2744 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2745 }
2746
2760#define K_MUTEX_DEFINE(name) \
2761 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2762 Z_MUTEX_INITIALIZER(name)
2763
2776__syscall int k_mutex_init(struct k_mutex *mutex);
2777
2778
2801
2822__syscall int k_mutex_unlock(struct k_mutex *mutex);
2823
2830 _wait_q_t wait_q;
2831};
2832
2833#define Z_CONDVAR_INITIALIZER(obj) \
2834 { \
2835 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2836 }
2837
2850__syscall int k_condvar_init(struct k_condvar *condvar);
2851
2858__syscall int k_condvar_signal(struct k_condvar *condvar);
2859
2867__syscall int k_condvar_broadcast(struct k_condvar *condvar);
2868
2886__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
2888
2899#define K_CONDVAR_DEFINE(name) \
2900 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
2901 Z_CONDVAR_INITIALIZER(name)
2910struct k_sem {
2911 _wait_q_t wait_q;
2912 unsigned int count;
2913 unsigned int limit;
2914
2915 _POLL_EVENT;
2916
2918
2919};
2920
2921#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
2922 { \
2923 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2924 .count = initial_count, \
2925 .limit = count_limit, \
2926 _POLL_EVENT_OBJ_INIT(obj) \
2927 }
2928
2947#define K_SEM_MAX_LIMIT UINT_MAX
2948
2964__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
2965 unsigned int limit);
2966
2985__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
2986
2997__syscall void k_sem_give(struct k_sem *sem);
2998
3008__syscall void k_sem_reset(struct k_sem *sem);
3009
3019__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3020
3024static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3025{
3026 return sem->count;
3027}
3028
3040#define K_SEM_DEFINE(name, initial_count, count_limit) \
3041 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3042 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3043 BUILD_ASSERT(((count_limit) != 0) && \
3044 ((initial_count) <= (count_limit)) && \
3045 ((count_limit) <= K_SEM_MAX_LIMIT));
3046
3053struct k_work_delayable;
3054struct k_work_sync;
3055
3072typedef void (*k_work_handler_t)(struct k_work *work);
3073
3089
3104int k_work_busy_get(const struct k_work *work);
3105
3119static inline bool k_work_is_pending(const struct k_work *work);
3120
3142 struct k_work *work);
3143
3152extern int k_work_submit(struct k_work *work);
3153
3179 struct k_work_sync *sync);
3180
3201
3232bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3233
3244
3265 k_thread_stack_t *stack, size_t stack_size,
3266 int prio, const struct k_work_queue_config *cfg);
3267
3277static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3278
3302int k_work_queue_drain(struct k_work_q *queue, bool plug);
3303
3318
3334
3346static inline struct k_work_delayable *
3348
3363
3378static inline bool k_work_delayable_is_pending(
3379 const struct k_work_delayable *dwork);
3380
3395 const struct k_work_delayable *dwork);
3396
3411 const struct k_work_delayable *dwork);
3412
3439 struct k_work_delayable *dwork,
3440 k_timeout_t delay);
3441
3456 k_timeout_t delay);
3457
3494 struct k_work_delayable *dwork,
3495 k_timeout_t delay);
3496
3510 k_timeout_t delay);
3511
3537 struct k_work_sync *sync);
3538
3560
3590 struct k_work_sync *sync);
3591
3592enum {
3597 /* The atomic API is used for all work and queue flags fields to
3598 * enforce sequential consistency in SMP environments.
3599 */
3600
3601 /* Bits that represent the work item states. At least nine of the
3602 * combinations are distinct valid stable states.
3603 */
3604 K_WORK_RUNNING_BIT = 0,
3605 K_WORK_CANCELING_BIT = 1,
3606 K_WORK_QUEUED_BIT = 2,
3607 K_WORK_DELAYED_BIT = 3,
3608
3609 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3610 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT),
3611
3612 /* Static work flags */
3613 K_WORK_DELAYABLE_BIT = 8,
3614 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3615
3616 /* Dynamic work queue flags */
3617 K_WORK_QUEUE_STARTED_BIT = 0,
3618 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3619 K_WORK_QUEUE_BUSY_BIT = 1,
3620 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3621 K_WORK_QUEUE_DRAIN_BIT = 2,
3622 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3623 K_WORK_QUEUE_PLUGGED_BIT = 3,
3624 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3625
3626 /* Static work queue flags */
3627 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3628 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3629
3633 /* Transient work flags */
3634
3640 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3641
3646 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3647
3653 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3654
3660 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3661};
3662
3664struct k_work {
3665 /* All fields are protected by the work module spinlock. No fields
3666 * are to be accessed except through kernel API.
3667 */
3668
3669 /* Node to link into k_work_q pending list. */
3671
3672 /* The function to be invoked by the work queue thread. */
3674
3675 /* The queue on which the work item was last submitted. */
3677
3678 /* State of the work item.
3679 *
3680 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3681 *
3682 * It can be RUNNING and CANCELING simultaneously.
3683 */
3685};
3686
3687#define Z_WORK_INITIALIZER(work_handler) { \
3688 .handler = work_handler, \
3689}
3690
3693 /* The work item. */
3694 struct k_work work;
3695
3696 /* Timeout used to submit work after a delay. */
3697 struct _timeout timeout;
3698
3699 /* The queue to which the work should be submitted. */
3701};
3702
3703#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3704 .work = { \
3705 .handler = work_handler, \
3706 .flags = K_WORK_DELAYABLE, \
3707 }, \
3708}
3709
3726#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3727 struct k_work_delayable work \
3728 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3729
3734/* Record used to wait for work to flush.
3735 *
3736 * The work item is inserted into the queue that will process (or is
3737 * processing) the item, and will be processed as soon as the item
3738 * completes. When the flusher is processed the semaphore will be
3739 * signaled, releasing the thread waiting for the flush.
3740 */
3741struct z_work_flusher {
3742 struct k_work work;
3743 struct k_sem sem;
3744};
3745
3746/* Record used to wait for work to complete a cancellation.
3747 *
3748 * The work item is inserted into a global queue of pending cancels.
3749 * When a cancelling work item goes idle any matching waiters are
3750 * removed from pending_cancels and are woken.
3751 */
3752struct z_work_canceller {
3753 sys_snode_t node;
3754 struct k_work *work;
3755 struct k_sem sem;
3756};
3757
3776 union {
3777 struct z_work_flusher flusher;
3778 struct z_work_canceller canceller;
3779 };
3780};
3781
3793 const char *name;
3794
3808};
3809
3811struct k_work_q {
3812 /* The thread that animates the work. */
3814
3815 /* All the following fields must be accessed only while the
3816 * work module spinlock is held.
3817 */
3818
3819 /* List of k_work items to be worked. */
3821
3822 /* Wait queue for idle work thread. */
3823 _wait_q_t notifyq;
3824
3825 /* Wait queue for threads waiting for the queue to drain. */
3826 _wait_q_t drainq;
3827
3828 /* Flags describing queue state. */
3830};
3831
3832/* Provide the implementation for inline functions declared above */
3833
3834static inline bool k_work_is_pending(const struct k_work *work)
3835{
3836 return k_work_busy_get(work) != 0;
3837}
3838
3839static inline struct k_work_delayable *
3841{
3842 return CONTAINER_OF(work, struct k_work_delayable, work);
3843}
3844
3846 const struct k_work_delayable *dwork)
3847{
3848 return k_work_delayable_busy_get(dwork) != 0;
3849}
3850
3852 const struct k_work_delayable *dwork)
3853{
3854 return z_timeout_expires(&dwork->timeout);
3855}
3856
3858 const struct k_work_delayable *dwork)
3859{
3860 return z_timeout_remaining(&dwork->timeout);
3861}
3862
3864{
3865 return &queue->thread;
3866}
3867
3870struct k_work_user;
3871
3886typedef void (*k_work_user_handler_t)(struct k_work_user *work);
3887
3892struct k_work_user_q {
3893 struct k_queue queue;
3894 struct k_thread thread;
3895};
3896
3897enum {
3898 K_WORK_USER_STATE_PENDING, /* Work item pending state */
3899};
3900
3901struct k_work_user {
3902 void *_reserved; /* Used by k_queue implementation. */
3905};
3906
3911#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
3912#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
3913#else
3914#define Z_WORK_USER_INITIALIZER(work_handler) \
3915 { \
3916 ._reserved = NULL, \
3917 .handler = work_handler, \
3918 .flags = 0 \
3919 }
3920#endif
3921
3933#define K_WORK_USER_DEFINE(work, work_handler) \
3934 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
3935
3945static inline void k_work_user_init(struct k_work_user *work,
3947{
3948 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
3949}
3950
3967static inline bool k_work_user_is_pending(struct k_work_user *work)
3968{
3969 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
3970}
3971
3990static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
3991 struct k_work_user *work)
3992{
3993 int ret = -EBUSY;
3994
3996 K_WORK_USER_STATE_PENDING)) {
3997 ret = k_queue_alloc_append(&work_q->queue, work);
3998
3999 /* Couldn't insert into the queue. Clear the pending bit
4000 * so the work item can be submitted again
4001 */
4002 if (ret != 0) {
4004 K_WORK_USER_STATE_PENDING);
4005 }
4006 }
4007
4008 return ret;
4009}
4010
4030extern void k_work_user_queue_start(struct k_work_user_q *work_q,
4032 size_t stack_size, int prio,
4033 const char *name);
4034
4045static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4046{
4047 return &work_q->thread;
4048}
4049
4056struct k_work_poll {
4057 struct k_work work;
4058 struct k_work_q *workq;
4059 struct z_poller poller;
4060 struct k_poll_event *events;
4061 int num_events;
4062 k_work_handler_t real_handler;
4063 struct _timeout timeout;
4064 int poll_result;
4065};
4066
4087#define K_WORK_DEFINE(work, work_handler) \
4088 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4089
4099extern void k_work_poll_init(struct k_work_poll *work,
4101
4136extern int k_work_poll_submit_to_queue(struct k_work_q *work_q,
4137 struct k_work_poll *work,
4138 struct k_poll_event *events,
4139 int num_events,
4141
4173extern int k_work_poll_submit(struct k_work_poll *work,
4174 struct k_poll_event *events,
4175 int num_events,
4177
4192extern int k_work_poll_cancel(struct k_work_poll *work);
4193
4205struct k_msgq {
4207 _wait_q_t wait_q;
4211 size_t msg_size;
4224
4225 _POLL_EVENT;
4226
4229
4231};
4237#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4238 { \
4239 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4240 .msg_size = q_msg_size, \
4241 .max_msgs = q_max_msgs, \
4242 .buffer_start = q_buffer, \
4243 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4244 .read_ptr = q_buffer, \
4245 .write_ptr = q_buffer, \
4246 .used_msgs = 0, \
4247 _POLL_EVENT_OBJ_INIT(obj) \
4248 }
4249
4255#define K_MSGQ_FLAG_ALLOC BIT(0)
4256
4262 size_t msg_size;
4267};
4268
4269
4290#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4291 static char __noinit __aligned(q_align) \
4292 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4293 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4294 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4295 q_msg_size, q_max_msgs)
4296
4313void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4314 uint32_t max_msgs);
4315
4335__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4336 uint32_t max_msgs);
4337
4349
4371__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4372
4393__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4394
4409__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4410
4420__syscall void k_msgq_purge(struct k_msgq *msgq);
4421
4433
4442__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4443 struct k_msgq_attrs *attrs);
4444
4445
4446static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4447{
4448 return msgq->max_msgs - msgq->used_msgs;
4449}
4450
4461
4462static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4463{
4464 return msgq->used_msgs;
4465}
4466
4481 uint32_t _mailbox;
4483 size_t size;
4487 void *tx_data;
4489 void *_rx_data;
4497 k_tid_t _syncing_thread;
4498#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4500 struct k_sem *_async_sem;
4501#endif
4502};
4507struct k_mbox {
4509 _wait_q_t tx_msg_queue;
4511 _wait_q_t rx_msg_queue;
4513
4515};
4520#define Z_MBOX_INITIALIZER(obj) \
4521 { \
4522 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4523 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4524 }
4525
4539#define K_MBOX_DEFINE(name) \
4540 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4541 Z_MBOX_INITIALIZER(name) \
4542
4550extern void k_mbox_init(struct k_mbox *mbox);
4551
4571extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4573
4587extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4588 struct k_sem *sem);
4589
4607extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4608 void *buffer, k_timeout_t timeout);
4609
4623extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4624
4634struct k_pipe {
4635 unsigned char *buffer;
4636 size_t size;
4637 size_t bytes_used;
4638 size_t read_index;
4642 struct {
4643 _wait_q_t readers;
4644 _wait_q_t writers;
4647 _POLL_EVENT;
4648
4652};
4653
4657#define K_PIPE_FLAG_ALLOC BIT(0)
4659#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4660 { \
4661 .buffer = pipe_buffer, \
4662 .size = pipe_buffer_size, \
4663 .bytes_used = 0, \
4664 .read_index = 0, \
4665 .write_index = 0, \
4666 .lock = {}, \
4667 .wait_q = { \
4668 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4669 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4670 }, \
4671 _POLL_EVENT_OBJ_INIT(obj) \
4672 .flags = 0, \
4673 }
4674
4692#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4693 static unsigned char __noinit __aligned(pipe_align) \
4694 _k_pipe_buf_##name[pipe_buffer_size]; \
4695 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4696 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4697
4709void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4710
4723
4739__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4740
4759__syscall int k_pipe_put(struct k_pipe *pipe, void *data,
4760 size_t bytes_to_write, size_t *bytes_written,
4761 size_t min_xfer, k_timeout_t timeout);
4762
4782__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
4783 size_t bytes_to_read, size_t *bytes_read,
4784 size_t min_xfer, k_timeout_t timeout);
4785
4794__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
4795
4804__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
4805
4816__syscall void k_pipe_flush(struct k_pipe *pipe);
4817
4829__syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
4830
4837struct k_mem_slab {
4838 _wait_q_t wait_q;
4839 struct k_spinlock lock;
4840 uint32_t num_blocks;
4841 size_t block_size;
4842 char *buffer;
4843 char *free_list;
4844 uint32_t num_used;
4845#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
4846 uint32_t max_used;
4847#endif
4848
4850};
4851
4852#define Z_MEM_SLAB_INITIALIZER(obj, slab_buffer, slab_block_size, \
4853 slab_num_blocks) \
4854 { \
4855 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4856 .lock = {}, \
4857 .num_blocks = slab_num_blocks, \
4858 .block_size = slab_block_size, \
4859 .buffer = slab_buffer, \
4860 .free_list = NULL, \
4861 .num_used = 0, \
4862 }
4863
4864
4898#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
4899 char __noinit_named(k_mem_slab_buf_##name) \
4900 __aligned(WB_UP(slab_align)) \
4901 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4902 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4903 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4904 WB_UP(slab_block_size), slab_num_blocks)
4905
4920#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
4921 static char __noinit_named(k_mem_slab_buf_##name) \
4922 __aligned(WB_UP(slab_align)) \
4923 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4924 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4925 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4926 WB_UP(slab_block_size), slab_num_blocks)
4927
4949extern int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
4950 size_t block_size, uint32_t num_blocks);
4951
4974extern int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
4976
4986extern void k_mem_slab_free(struct k_mem_slab *slab, void **mem);
4987
4998static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
4999{
5000 return slab->num_used;
5001}
5002
5013static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5014{
5015#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5016 return slab->max_used;
5017#else
5018 ARG_UNUSED(slab);
5019 return 0;
5020#endif
5021}
5022
5033static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5034{
5035 return slab->num_blocks - slab->num_used;
5036}
5037
5050int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5051
5063int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5064
5072/* kernel synchronized heap struct */
5073
5074struct k_heap {
5076 _wait_q_t wait_q;
5078};
5079
5093void k_heap_init(struct k_heap *h, void *mem, size_t bytes);
5094
5114void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5116
5137void *k_heap_alloc(struct k_heap *h, size_t bytes,
5139
5150void k_heap_free(struct k_heap *h, void *mem);
5151
5152/* Hand-calculated minimum heap sizes needed to return a successful
5153 * 1-byte allocation. See details in lib/os/heap.[ch]
5154 */
5155#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5156
5173#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5174 char in_section \
5175 __aligned(8) /* CHUNK_UNIT */ \
5176 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5177 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5178 .heap = { \
5179 .init_mem = kheap_##name, \
5180 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5181 }, \
5182 }
5183
5198#define K_HEAP_DEFINE(name, bytes) \
5199 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5200 __noinit_named(kheap_buf_##name))
5201
5216#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5217 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5218
5247extern void *k_aligned_alloc(size_t align, size_t size);
5248
5259extern void *k_malloc(size_t size);
5260
5271extern void k_free(void *ptr);
5272
5284extern void *k_calloc(size_t nmemb, size_t size);
5285
5288/* polling API - PRIVATE */
5289
5290#ifdef CONFIG_POLL
5291#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5292#else
5293#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5294#endif
5295
5296/* private - types bit positions */
5297enum _poll_types_bits {
5298 /* can be used to ignore an event */
5299 _POLL_TYPE_IGNORE,
5300
5301 /* to be signaled by k_poll_signal_raise() */
5302 _POLL_TYPE_SIGNAL,
5303
5304 /* semaphore availability */
5305 _POLL_TYPE_SEM_AVAILABLE,
5306
5307 /* queue/FIFO/LIFO data availability */
5308 _POLL_TYPE_DATA_AVAILABLE,
5309
5310 /* msgq data availability */
5311 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5312
5313 /* pipe data availability */
5314 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5315
5316 _POLL_NUM_TYPES
5317};
5318
5319#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5320
5321/* private - states bit positions */
5322enum _poll_states_bits {
5323 /* default state when creating event */
5324 _POLL_STATE_NOT_READY,
5325
5326 /* signaled by k_poll_signal_raise() */
5327 _POLL_STATE_SIGNALED,
5328
5329 /* semaphore is available */
5330 _POLL_STATE_SEM_AVAILABLE,
5331
5332 /* data is available to read on queue/FIFO/LIFO */
5333 _POLL_STATE_DATA_AVAILABLE,
5334
5335 /* queue/FIFO/LIFO wait was cancelled */
5336 _POLL_STATE_CANCELLED,
5337
5338 /* data is available to read on a message queue */
5339 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5340
5341 /* data is available to read from a pipe */
5342 _POLL_STATE_PIPE_DATA_AVAILABLE,
5343
5344 _POLL_NUM_STATES
5345};
5346
5347#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5348
5349#define _POLL_EVENT_NUM_UNUSED_BITS \
5350 (32 - (0 \
5351 + 8 /* tag */ \
5352 + _POLL_NUM_TYPES \
5353 + _POLL_NUM_STATES \
5354 + 1 /* modes */ \
5355 ))
5356
5357/* end of polling API - PRIVATE */
5358
5359
5366/* Public polling API */
5367
5368/* public - values for k_poll_event.type bitfield */
5369#define K_POLL_TYPE_IGNORE 0
5370#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5371#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5372#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5373#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5374#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5375#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5376
5377/* public - polling modes */
5379 /* polling thread does not take ownership of objects when available */
5381
5384
5385/* public - values for k_poll_event.state bitfield */
5386#define K_POLL_STATE_NOT_READY 0
5387#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5388#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5389#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5390#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5391#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5392#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5393#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5394
5395/* public - poll signal object */
5399
5404 unsigned int signaled;
5405
5408};
5409
5410#define K_POLL_SIGNAL_INITIALIZER(obj) \
5411 { \
5412 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5413 .signaled = 0, \
5414 .result = 0, \
5415 }
5422 sys_dnode_t _node;
5423
5425 struct z_poller *poller;
5426
5429
5431 uint32_t type:_POLL_NUM_TYPES;
5432
5434 uint32_t state:_POLL_NUM_STATES;
5435
5438
5440 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5441
5443 union {
5444 void *obj;
5446 struct k_sem *sem;
5447 struct k_fifo *fifo;
5448 struct k_queue *queue;
5449 struct k_msgq *msgq;
5450#ifdef CONFIG_PIPES
5451 struct k_pipe *pipe;
5452#endif
5453 };
5454};
5455
5456#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5457 { \
5458 .poller = NULL, \
5459 .type = _event_type, \
5460 .state = K_POLL_STATE_NOT_READY, \
5461 .mode = _event_mode, \
5462 .unused = 0, \
5463 { \
5464 .obj = _event_obj, \
5465 }, \
5466 }
5467
5468#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5469 event_tag) \
5470 { \
5471 .tag = event_tag, \
5472 .type = _event_type, \
5473 .state = K_POLL_STATE_NOT_READY, \
5474 .mode = _event_mode, \
5475 .unused = 0, \
5476 { \
5477 .obj = _event_obj, \
5478 }, \
5479 }
5480
5496extern void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5497 int mode, void *obj);
5498
5542__syscall int k_poll(struct k_poll_event *events, int num_events,
5544
5553__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5554
5555/*
5556 * @brief Reset a poll signal object's state to unsignaled.
5557 *
5558 * @param sig A poll signal object
5559 */
5560__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5561
5572__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5573 unsigned int *signaled, int *result);
5574
5599__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5600
5604extern void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state);
5605
5626static inline void k_cpu_idle(void)
5627{
5628 arch_cpu_idle();
5629}
5630
5645static inline void k_cpu_atomic_idle(unsigned int key)
5646{
5648}
5649
5657#ifdef ARCH_EXCEPT
5658/* This architecture has direct support for triggering a CPU exception */
5659#define z_except_reason(reason) ARCH_EXCEPT(reason)
5660#else
5661
5662#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5663#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5664#else
5665#define __EXCEPT_LOC()
5666#endif
5667
5668/* NOTE: This is the implementation for arches that do not implement
5669 * ARCH_EXCEPT() to generate a real CPU exception.
5670 *
5671 * We won't have a real exception frame to determine the PC value when
5672 * the oops occurred, so print file and line number before we jump into
5673 * the fatal error handler.
5674 */
5675#define z_except_reason(reason) do { \
5676 __EXCEPT_LOC(); \
5677 z_fatal_error(reason, NULL); \
5678 } while (false)
5679
5680#endif /* _ARCH__EXCEPT */
5681
5693#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5694
5703#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5704
5705/*
5706 * private APIs that are utilized by one or more public APIs
5707 */
5708
5712extern void z_init_thread_base(struct _thread_base *thread_base,
5713 int priority, uint32_t initial_state,
5714 unsigned int options);
5715
5716#ifdef CONFIG_MULTITHREADING
5720extern void z_init_static_threads(void);
5721#else
5725#define z_init_static_threads() do { } while (false)
5726#endif
5727
5731extern bool z_is_thread_essential(void);
5732
5733#ifdef CONFIG_SMP
5734void z_smp_thread_init(void *arg, struct k_thread *thread);
5735void z_smp_thread_swap(void);
5736#endif
5737
5741extern void z_timer_expiration_handler(struct _timeout *t);
5742
5743#ifdef CONFIG_PRINTK
5751__syscall void k_str_out(char *c, size_t n);
5752#endif
5753
5774__syscall int k_float_disable(struct k_thread *thread);
5775
5814__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
5815
5825
5833
5844
5855
5864
5873
5874#ifdef __cplusplus
5875}
5876#endif
5877
5878#include <zephyr/tracing/tracing.h>
5879#include <syscalls/kernel.h>
5880
5881#endif /* !_ASMLANGUAGE */
5882
5883#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition: misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:44
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:46
static struct k_thread thread[2]
Definition: atomic.c:26
long atomic_t
Definition: atomic.h:22
ZTEST_BMEM int timeout
Definition: main.c:31
ZTEST_BMEM int count
Definition: main.c:33
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:131
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:198
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:176
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1676
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1641
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1657
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1691
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1617
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5626
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5645
struct _dnode sys_dnode_t
Definition: dlist.h:49
struct _dnode sys_dlist_t
Definition: dlist.h:48
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
void k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
void k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
void k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:323
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:990
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:4998
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5013
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5033
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5378
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5380
@ K_POLL_NUM_MODES
Definition: kernel.h:5382
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:335
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:101
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:210
#define EBUSY
Definition: errno.h:55
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
void k_thread_system_pool_assign(struct k_thread *thread)
Assign the system heap as a thread's resource pool.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:346
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:439
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:530
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:103
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1398
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1382
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1541
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:3863
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:3834
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:3851
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:3990
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:3967
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3072
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:3845
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:3945
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition: kernel.h:4045
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:3840
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:3857
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:3886
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3646
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3653
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3660
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3640
flags
Definition: http_parser.h:131
state
Definition: http_parser_state.h:29
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:88
@ K_ISR
Definition: kernel.h:89
@ K_COOP_THREAD
Definition: kernel.h:90
@ K_PREEMPT_THREAD
Definition: kernel.h:91
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
static ZTEST_BMEM volatile int ret
Definition: k_float_disable.c:28
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition: kernel_structs.h:255
struct k_mem_slab ms
Definition: kobject.c:1319
struct k_mutex mutex
Definition: kobject.c:1321
struct k_thread t
Definition: kobject.c:1327
Memory Statistics.
struct k_msgq msgq
Definition: test_msgq_contexts.c:12
char c
Definition: printk.c:103
void * ptr
Definition: printk.c:111
static struct k_work work[2]
Definition: main.c:16
struct _sfnode sys_sfnode_t
Definition: sflist.h:39
struct _sflist sys_sflist_t
Definition: sflist.h:46
struct _slist sys_slist_t
Definition: slist.h:40
struct _snode sys_snode_t
Definition: slist.h:33
char stack[2048]
Definition: main.c:22
static struct k_spinlock lock
Definition: spinlock_error_case.c:12
static k_spinlock_key_t key
Definition: spinlock_error_case.c:14
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition: stdint.h:104
__INT32_TYPE__ int32_t
Definition: stdint.h:74
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__INT64_TYPE__ int64_t
Definition: stdint.h:75
Static init entry structure for each device driver or services.
Definition: init.h:43
Definition: kernel.h:2829
_wait_q_t wait_q
Definition: kernel.h:2830
Definition: kernel.h:2080
struct k_spinlock lock
Definition: kernel.h:2083
uint32_t events
Definition: kernel.h:2082
_wait_q_t wait_q
Definition: kernel.h:2081
Definition: kernel.h:2209
futex structure
Definition: kernel.h:2001
atomic_t val
Definition: kernel.h:2002
Definition: kernel.h:5074
struct k_spinlock lock
Definition: kernel.h:5077
struct sys_heap heap
Definition: kernel.h:5075
_wait_q_t wait_q
Definition: kernel.h:5076
Definition: kernel.h:2443
Mailbox Message Structure.
Definition: kernel.h:4479
struct k_mem_block tx_block
Definition: kernel.h:4491
k_tid_t tx_target_thread
Definition: kernel.h:4495
void * tx_data
Definition: kernel.h:4487
k_tid_t rx_source_thread
Definition: kernel.h:4493
uint32_t info
Definition: kernel.h:4485
size_t size
Definition: kernel.h:4483
Mailbox Structure.
Definition: kernel.h:4507
_wait_q_t tx_msg_queue
Definition: kernel.h:4509
struct k_spinlock lock
Definition: kernel.h:4512
_wait_q_t rx_msg_queue
Definition: kernel.h:4511
Definition: mempool_heap.h:24
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4260
uint32_t used_msgs
Definition: kernel.h:4266
size_t msg_size
Definition: kernel.h:4262
uint32_t max_msgs
Definition: kernel.h:4264
Message Queue Structure.
Definition: kernel.h:4205
size_t msg_size
Definition: kernel.h:4211
char * read_ptr
Definition: kernel.h:4219
uint32_t used_msgs
Definition: kernel.h:4223
char * buffer_end
Definition: kernel.h:4217
struct k_spinlock lock
Definition: kernel.h:4209
char * write_ptr
Definition: kernel.h:4221
char * buffer_start
Definition: kernel.h:4215
uint8_t flags
Definition: kernel.h:4225
_wait_q_t wait_q
Definition: kernel.h:4207
uint32_t max_msgs
Definition: kernel.h:4213
Definition: kernel.h:2721
uint32_t lock_count
Definition: kernel.h:2728
_wait_q_t wait_q
Definition: kernel.h:2723
int owner_orig_prio
Definition: kernel.h:2731
struct k_thread * owner
Definition: kernel.h:2725
Definition: kernel.h:4634
uint8_t flags
Definition: kernel.h:4647
_wait_q_t readers
Definition: kernel.h:4643
size_t write_index
Definition: kernel.h:4639
size_t bytes_used
Definition: kernel.h:4637
struct k_spinlock lock
Definition: kernel.h:4640
struct k_pipe::@169 wait_q
_wait_q_t writers
Definition: kernel.h:4644
size_t size
Definition: kernel.h:4636
unsigned char * buffer
Definition: kernel.h:4635
size_t read_index
Definition: kernel.h:4638
Poll Event.
Definition: kernel.h:5420
struct k_poll_signal * signal
Definition: kernel.h:5445
uint32_t tag
Definition: kernel.h:5428
struct k_fifo * fifo
Definition: kernel.h:5447
struct k_msgq * msgq
Definition: kernel.h:5449
struct k_queue * queue
Definition: kernel.h:5448
uint32_t unused
Definition: kernel.h:5440
uint32_t type
Definition: kernel.h:5431
struct k_sem * sem
Definition: kernel.h:5446
uint32_t state
Definition: kernel.h:5434
uint32_t mode
Definition: kernel.h:5437
struct z_poller * poller
Definition: kernel.h:5425
void * obj
Definition: kernel.h:5444
Definition: kernel.h:5396
sys_dlist_t poll_events
Definition: kernel.h:5398
int result
Definition: kernel.h:5407
unsigned int signaled
Definition: kernel.h:5404
Kernel Spin Lock.
Definition: spinlock.h:42
Definition: thread.h:192
Definition: thread.h:245
struct _thread_base base
Definition: thread.h:247
struct k_heap * resource_pool
Definition: thread.h:325
struct __thread_entry entry
Definition: thread.h:271
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3692
struct _timeout timeout
Definition: kernel.h:3697
struct k_work_q * queue
Definition: kernel.h:3700
struct k_work work
Definition: kernel.h:3694
A structure used to hold work until it can be processed.
Definition: kernel.h:3811
sys_slist_t pending
Definition: kernel.h:3820
_wait_q_t drainq
Definition: kernel.h:3826
_wait_q_t notifyq
Definition: kernel.h:3823
uint32_t flags
Definition: kernel.h:3829
struct k_thread thread
Definition: kernel.h:3813
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3788
const char * name
Definition: kernel.h:3793
bool no_yield
Definition: kernel.h:3807
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3775
struct z_work_canceller canceller
Definition: kernel.h:3778
struct z_work_flusher flusher
Definition: kernel.h:3777
A structure used to submit work.
Definition: kernel.h:3664
k_work_handler_t handler
Definition: kernel.h:3673
uint32_t flags
Definition: kernel.h:3684
struct k_work_q * queue
Definition: kernel.h:3676
sys_snode_t node
Definition: kernel.h:3670
Definition: errno.c:37
Definition: sys_heap.h:56
Definition: mem_stats.h:24
static fdata_t data[2]
Definition: test_fifo_contexts.c:15
static struct k_mbox mbox
Definition: test_mbox_api.c:28
static ZTEST_BMEM char buffer[8]
Definition: test_mbox_api.c:551
static struct k_pipe pipe
Definition: test_mutex_error.c:18
struct k_queue queue
Definition: test_queue_contexts.c:17
static int init_prio
Definition: test_sched_timeslice_and_lock.c:15
static ZTEST_BMEM struct thread_data expected
static uint64_t k_ticks_to_ms_floor64(uint64_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1102
static uint32_t k_ticks_to_ms_floor32(uint32_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1088
static struct k_timer timer[3]
Definition: timeout_order.c:13
static struct k_sem sem[3]
Definition: timeout_order.c:14
static void handler(struct k_timer *timer)
Definition: main.c:19
static const intptr_t user_data[5]
Definition: main.c:588
Macros to abstract toolchain specific capabilities.
static struct k_work_delayable dwork
Definition: main.c:50