Zephyr Project API  3.3.0
A Scalable Open Source RTOS
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
24
25#ifdef __cplusplus
26extern "C" {
27#endif
28
29/*
30 * Zephyr currently assumes the size of a couple standard types to simplify
31 * print string formats. Let's make sure this doesn't change without notice.
32 */
33BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
34BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
35BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
36
44#define K_ANY NULL
45#define K_END NULL
46
47#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
48#error Zero available thread priorities defined!
49#endif
50
51#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
52#define K_PRIO_PREEMPT(x) (x)
53
54#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
55#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
56#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
57#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
58#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
59
60#ifdef CONFIG_POLL
61#define _POLL_EVENT_OBJ_INIT(obj) \
62 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
63#define _POLL_EVENT sys_dlist_t poll_events
64#else
65#define _POLL_EVENT_OBJ_INIT(obj)
66#define _POLL_EVENT
67#endif
68
69struct k_thread;
70struct k_mutex;
71struct k_sem;
72struct k_msgq;
73struct k_mbox;
74struct k_pipe;
75struct k_queue;
76struct k_fifo;
77struct k_lifo;
78struct k_stack;
79struct k_mem_slab;
80struct k_timer;
81struct k_poll_event;
82struct k_poll_signal;
83struct k_mem_domain;
84struct k_mem_partition;
85struct k_futex;
86struct k_event;
87
89 K_ISR = 0,
92};
93
94/* private, used by k_poll and k_work_poll */
95struct k_work_poll;
96typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
97
103typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
104 void *user_data);
105
122
151 k_thread_user_cb_t user_cb, void *user_data);
152
161#endif /* !_ASMLANGUAGE */
162
163
164/*
165 * Thread user options. May be needed by assembly code. Common part uses low
166 * bits, arch-specific use high bits.
167 */
168
172#define K_ESSENTIAL (BIT(0))
173
174#if defined(CONFIG_FPU_SHARING)
184#define K_FP_IDX 1
185#define K_FP_REGS (BIT(K_FP_IDX))
186#endif
187
194#define K_USER (BIT(2))
195
204#define K_INHERIT_PERMS (BIT(3))
205
215#define K_CALLBACK_STATE (BIT(4))
216
217#ifdef CONFIG_ARC
218/* ARC processor Bitmask definitions for threads user options */
219
220#if defined(CONFIG_ARC_DSP_SHARING)
230#define K_DSP_IDX 6
231#define K_ARC_DSP_REGS (BIT(K_DSP_IDX))
232#endif
233
234#if defined(CONFIG_ARC_AGU_SHARING)
243#define K_AGU_IDX 7
244#define K_ARC_AGU_REGS (BIT(K_AGU_IDX))
245#endif
246#endif
247
248#ifdef CONFIG_X86
249/* x86 Bitmask definitions for threads user options */
250
251#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
261#define K_SSE_REGS (BIT(7))
262#endif
263#endif
264
265/* end - thread options */
266
267#if !defined(_ASMLANGUAGE)
316__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
318 size_t stack_size,
320 void *p1, void *p2, void *p3,
321 int prio, uint32_t options, k_timeout_t delay);
322
345 void *p1, void *p2,
346 void *p3);
347
361#define k_thread_access_grant(thread, ...) \
362 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
363
378static inline void k_thread_heap_assign(struct k_thread *thread,
379 struct k_heap *heap)
380{
381 thread->resource_pool = heap;
382}
383
384#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
405__syscall int k_thread_stack_space_get(const struct k_thread *thread,
406 size_t *unused_ptr);
407#endif
408
409#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
423#endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */
424
445
460
472{
473 return k_sleep(Z_TIMEOUT_MS(ms));
474}
475
492
505__syscall void k_busy_wait(uint32_t usec_to_wait);
506
518bool k_can_yield(void);
519
527__syscall void k_yield(void);
528
538__syscall void k_wakeup(k_tid_t thread);
539
547__attribute_const__
548__syscall k_tid_t z_current_get(void);
549
550#ifdef CONFIG_THREAD_LOCAL_STORAGE
551/* Thread-local cache of current thread ID, set in z_thread_entry() */
552extern __thread k_tid_t z_tls_current;
553#endif
554
561__attribute_const__
562static inline k_tid_t k_current_get(void)
563{
564#ifdef CONFIG_THREAD_LOCAL_STORAGE
565 return z_tls_current;
566#else
567 return z_current_get();
568#endif
569}
570
595
596
607
608extern k_ticks_t z_timeout_expires(const struct _timeout *timeout);
609extern k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
610
611#ifdef CONFIG_SYS_CLOCK_EXISTS
612
621
622static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
623 const struct k_thread *t)
624{
625 return z_timeout_expires(&t->base.timeout);
626}
627
636
637static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
638 const struct k_thread *t)
639{
640 return z_timeout_remaining(&t->base.timeout);
641}
642
643#endif /* CONFIG_SYS_CLOCK_EXISTS */
644
649/* timeout has timed out and is not on _timeout_q anymore */
650#define _EXPIRED (-2)
651
652struct _static_thread_data {
653 struct k_thread *init_thread;
654 k_thread_stack_t *init_stack;
655 unsigned int init_stack_size;
657 void *init_p1;
658 void *init_p2;
659 void *init_p3;
660 int init_prio;
661 uint32_t init_options;
662 int32_t init_delay;
663 void (*init_abort)(void);
664 const char *init_name;
665};
666
667#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
668 entry, p1, p2, p3, \
669 prio, options, delay, tname) \
670 { \
671 .init_thread = (thread), \
672 .init_stack = (stack), \
673 .init_stack_size = (stack_size), \
674 .init_entry = (k_thread_entry_t)entry, \
675 .init_p1 = (void *)p1, \
676 .init_p2 = (void *)p2, \
677 .init_p3 = (void *)p3, \
678 .init_prio = (prio), \
679 .init_options = (options), \
680 .init_delay = (delay), \
681 .init_name = STRINGIFY(tname), \
682 }
683
717#define K_THREAD_DEFINE(name, stack_size, \
718 entry, p1, p2, p3, \
719 prio, options, delay) \
720 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
721 struct k_thread _k_thread_obj_##name; \
722 STRUCT_SECTION_ITERABLE(_static_thread_data, _k_thread_data_##name) = \
723 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
724 _k_thread_stack_##name, stack_size, \
725 entry, p1, p2, p3, prio, options, delay, \
726 name); \
727 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
728
739
765__syscall void k_thread_priority_set(k_tid_t thread, int prio);
766
767
768#ifdef CONFIG_SCHED_DEADLINE
801__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
802#endif
803
804#ifdef CONFIG_SCHED_CPU_MASK
818
832
846
860
872#endif
873
890
902
929extern void k_sched_time_slice_set(int32_t slice, int prio);
930
969void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
970 k_thread_timeslice_fn_t expired, void *data);
971
990extern bool k_is_in_isr(void);
991
1008__syscall int k_is_preempt_thread(void);
1009
1021static inline bool k_is_pre_kernel(void)
1022{
1023 extern bool z_sys_post_kernel; /* in init.c */
1024
1025 return !z_sys_post_kernel;
1026}
1027
1053extern void k_sched_lock(void);
1054
1062extern void k_sched_unlock(void);
1063
1076__syscall void k_thread_custom_data_set(void *value);
1077
1085__syscall void *k_thread_custom_data_get(void);
1086
1100__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1101
1111
1123__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1124 size_t size);
1125
1138const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1139
1157#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1158
1171#define K_NSEC(t) Z_TIMEOUT_NS(t)
1172
1185#define K_USEC(t) Z_TIMEOUT_US(t)
1186
1197#define K_CYC(t) Z_TIMEOUT_CYC(t)
1198
1209#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1210
1221#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1222
1233#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1234
1245#define K_MINUTES(m) K_SECONDS((m) * 60)
1246
1257#define K_HOURS(h) K_MINUTES((h) * 60)
1258
1267#define K_FOREVER Z_FOREVER
1268
1269#ifdef CONFIG_TIMEOUT_64BIT
1270
1282#define K_TIMEOUT_ABS_TICKS(t) \
1283 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1284
1296#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1297
1310#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1311
1324#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1325
1338#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1339
1340#endif
1341
1350struct k_timer {
1351 /*
1352 * _timeout structure must be first here if we want to use
1353 * dynamic timer allocation. timeout.node is used in the double-linked
1354 * list of free timers
1355 */
1356 struct _timeout timeout;
1357
1358 /* wait queue for the (single) thread waiting on this timer */
1359 _wait_q_t wait_q;
1360
1361 /* runs in ISR context */
1362 void (*expiry_fn)(struct k_timer *timer);
1363
1364 /* runs in the context of the thread that calls k_timer_stop() */
1365 void (*stop_fn)(struct k_timer *timer);
1366
1367 /* timer period */
1368 k_timeout_t period;
1369
1370 /* timer status */
1371 uint32_t status;
1372
1373 /* user-specific data, also used to support legacy features */
1374 void *user_data;
1375
1377};
1378
1379#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1380 { \
1381 .timeout = { \
1382 .node = {},\
1383 .fn = z_timer_expiration_handler, \
1384 .dticks = 0, \
1385 }, \
1386 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1387 .expiry_fn = expiry, \
1388 .stop_fn = stop, \
1389 .status = 0, \
1390 .user_data = 0, \
1391 }
1392
1413typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1414
1429typedef void (*k_timer_stop_t)(struct k_timer *timer);
1430
1442#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1443 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1444 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1445
1455extern void k_timer_init(struct k_timer *timer,
1456 k_timer_expiry_t expiry_fn,
1457 k_timer_stop_t stop_fn);
1458
1473__syscall void k_timer_start(struct k_timer *timer,
1474 k_timeout_t duration, k_timeout_t period);
1475
1492__syscall void k_timer_stop(struct k_timer *timer);
1493
1506__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1507
1525__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1526
1527#ifdef CONFIG_SYS_CLOCK_EXISTS
1528
1539__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1540
1541static inline k_ticks_t z_impl_k_timer_expires_ticks(
1542 const struct k_timer *timer)
1543{
1544 return z_timeout_expires(&timer->timeout);
1545}
1546
1554__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1555
1556static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1557 const struct k_timer *timer)
1558{
1559 return z_timeout_remaining(&timer->timeout);
1560}
1561
1572static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1573{
1575}
1576
1577#endif /* CONFIG_SYS_CLOCK_EXISTS */
1578
1591__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1592
1596static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1597 void *user_data)
1598{
1599 timer->user_data = user_data;
1600}
1601
1609__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1610
1611static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1612{
1613 return timer->user_data;
1614}
1615
1633__syscall int64_t k_uptime_ticks(void);
1634
1648static inline int64_t k_uptime_get(void)
1649{
1651}
1652
1672static inline uint32_t k_uptime_get_32(void)
1673{
1674 return (uint32_t)k_uptime_get();
1675}
1676
1688static inline int64_t k_uptime_delta(int64_t *reftime)
1689{
1690 int64_t uptime, delta;
1691
1692 uptime = k_uptime_get();
1693 delta = uptime - *reftime;
1694 *reftime = uptime;
1695
1696 return delta;
1697}
1698
1707static inline uint32_t k_cycle_get_32(void)
1708{
1709 return arch_k_cycle_get_32();
1710}
1711
1722static inline uint64_t k_cycle_get_64(void)
1723{
1724 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1725 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1726 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1727 return 0;
1728 }
1729
1730 return arch_k_cycle_get_64();
1731}
1732
1741struct k_queue {
1742 sys_sflist_t data_q;
1743 struct k_spinlock lock;
1744 _wait_q_t wait_q;
1745
1746 _POLL_EVENT;
1747
1749};
1750
1751#define Z_QUEUE_INITIALIZER(obj) \
1752 { \
1753 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1754 .lock = { }, \
1755 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1756 _POLL_EVENT_OBJ_INIT(obj) \
1757 }
1758
1759extern void *z_queue_node_peek(sys_sfnode_t *node, bool needs_free);
1760
1778__syscall void k_queue_init(struct k_queue *queue);
1779
1793__syscall void k_queue_cancel_wait(struct k_queue *queue);
1794
1807extern void k_queue_append(struct k_queue *queue, void *data);
1808
1825__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1826
1839extern void k_queue_prepend(struct k_queue *queue, void *data);
1840
1857__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1858
1872extern void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1873
1892extern int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
1893
1909extern int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
1910
1929__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
1930
1947bool k_queue_remove(struct k_queue *queue, void *data);
1948
1963bool k_queue_unique_append(struct k_queue *queue, void *data);
1964
1978__syscall int k_queue_is_empty(struct k_queue *queue);
1979
1980static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
1981{
1982 return (int)sys_sflist_is_empty(&queue->data_q);
1983}
1984
1994__syscall void *k_queue_peek_head(struct k_queue *queue);
1995
2005__syscall void *k_queue_peek_tail(struct k_queue *queue);
2006
2016#define K_QUEUE_DEFINE(name) \
2017 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2018 Z_QUEUE_INITIALIZER(name)
2019
2022#ifdef CONFIG_USERSPACE
2032struct k_futex {
2034};
2035
2043struct z_futex_data {
2044 _wait_q_t wait_q;
2045 struct k_spinlock lock;
2046};
2047
2048#define Z_FUTEX_DATA_INITIALIZER(obj) \
2049 { \
2050 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2051 }
2052
2078__syscall int k_futex_wait(struct k_futex *futex, int expected,
2080
2095__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2096
2098#endif
2099
2111struct k_event {
2112 _wait_q_t wait_q;
2115
2117};
2118
2119#define Z_EVENT_INITIALIZER(obj) \
2120 { \
2121 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2122 .events = 0 \
2123 }
2124
2132__syscall void k_event_init(struct k_event *event);
2133
2147__syscall void k_event_post(struct k_event *event, uint32_t events);
2148
2162__syscall void k_event_set(struct k_event *event, uint32_t events);
2163
2176__syscall void k_event_set_masked(struct k_event *event, uint32_t events,
2177 uint32_t events_mask);
2178
2187__syscall void k_event_clear(struct k_event *event, uint32_t events);
2188
2210__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2211 bool reset, k_timeout_t timeout);
2212
2234__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2235 bool reset, k_timeout_t timeout);
2236
2246#define K_EVENT_DEFINE(name) \
2247 STRUCT_SECTION_ITERABLE(k_event, name) = \
2248 Z_EVENT_INITIALIZER(name);
2249
2252struct k_fifo {
2253 struct k_queue _queue;
2254};
2255
2259#define Z_FIFO_INITIALIZER(obj) \
2260 { \
2261 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2262 }
2263
2281#define k_fifo_init(fifo) \
2282 ({ \
2283 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2284 k_queue_init(&(fifo)->_queue); \
2285 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2286 })
2287
2299#define k_fifo_cancel_wait(fifo) \
2300 ({ \
2301 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2302 k_queue_cancel_wait(&(fifo)->_queue); \
2303 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2304 })
2305
2318#define k_fifo_put(fifo, data) \
2319 ({ \
2320 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2321 k_queue_append(&(fifo)->_queue, data); \
2322 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2323 })
2324
2341#define k_fifo_alloc_put(fifo, data) \
2342 ({ \
2343 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2344 int ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2345 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, ret); \
2346 ret; \
2347 })
2348
2363#define k_fifo_put_list(fifo, head, tail) \
2364 ({ \
2365 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2366 k_queue_append_list(&(fifo)->_queue, head, tail); \
2367 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2368 })
2369
2383#define k_fifo_put_slist(fifo, list) \
2384 ({ \
2385 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2386 k_queue_merge_slist(&(fifo)->_queue, list); \
2387 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2388 })
2389
2407#define k_fifo_get(fifo, timeout) \
2408 ({ \
2409 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2410 void *ret = k_queue_get(&(fifo)->_queue, timeout); \
2411 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, ret); \
2412 ret; \
2413 })
2414
2428#define k_fifo_is_empty(fifo) \
2429 k_queue_is_empty(&(fifo)->_queue)
2430
2444#define k_fifo_peek_head(fifo) \
2445 ({ \
2446 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2447 void *ret = k_queue_peek_head(&(fifo)->_queue); \
2448 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, ret); \
2449 ret; \
2450 })
2451
2463#define k_fifo_peek_tail(fifo) \
2464 ({ \
2465 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2466 void *ret = k_queue_peek_tail(&(fifo)->_queue); \
2467 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, ret); \
2468 ret; \
2469 })
2470
2480#define K_FIFO_DEFINE(name) \
2481 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_fifo, name) = \
2482 Z_FIFO_INITIALIZER(name)
2483
2486struct k_lifo {
2487 struct k_queue _queue;
2488};
2489
2494#define Z_LIFO_INITIALIZER(obj) \
2495 { \
2496 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2497 }
2498
2516#define k_lifo_init(lifo) \
2517 ({ \
2518 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2519 k_queue_init(&(lifo)->_queue); \
2520 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2521 })
2522
2535#define k_lifo_put(lifo, data) \
2536 ({ \
2537 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2538 k_queue_prepend(&(lifo)->_queue, data); \
2539 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2540 })
2541
2558#define k_lifo_alloc_put(lifo, data) \
2559 ({ \
2560 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2561 int ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2562 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, ret); \
2563 ret; \
2564 })
2565
2583#define k_lifo_get(lifo, timeout) \
2584 ({ \
2585 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2586 void *ret = k_queue_get(&(lifo)->_queue, timeout); \
2587 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, ret); \
2588 ret; \
2589 })
2590
2600#define K_LIFO_DEFINE(name) \
2601 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_lifo, name) = \
2602 Z_LIFO_INITIALIZER(name)
2603
2609#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2610
2611typedef uintptr_t stack_data_t;
2612
2613struct k_stack {
2614 _wait_q_t wait_q;
2615 struct k_spinlock lock;
2616 stack_data_t *base, *next, *top;
2617
2618 uint8_t flags;
2619
2621};
2622
2623#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2624 { \
2625 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2626 .base = stack_buffer, \
2627 .next = stack_buffer, \
2628 .top = stack_buffer + stack_num_entries, \
2629 }
2630
2650void k_stack_init(struct k_stack *stack,
2651 stack_data_t *buffer, uint32_t num_entries);
2652
2653
2668__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2669 uint32_t num_entries);
2670
2682int k_stack_cleanup(struct k_stack *stack);
2683
2697__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2698
2719__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2721
2732#define K_STACK_DEFINE(name, stack_num_entries) \
2733 stack_data_t __noinit \
2734 _k_stack_buf_##name[stack_num_entries]; \
2735 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2736 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2737 stack_num_entries)
2738
2745struct k_work;
2746struct k_work_q;
2747struct k_work_queue_config;
2748extern struct k_work_q k_sys_work_q;
2749
2764struct k_mutex {
2766 _wait_q_t wait_q;
2769
2772
2775
2777};
2778
2782#define Z_MUTEX_INITIALIZER(obj) \
2783 { \
2784 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2785 .owner = NULL, \
2786 .lock_count = 0, \
2787 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2788 }
2789
2803#define K_MUTEX_DEFINE(name) \
2804 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2805 Z_MUTEX_INITIALIZER(name)
2806
2819__syscall int k_mutex_init(struct k_mutex *mutex);
2820
2821
2844
2865__syscall int k_mutex_unlock(struct k_mutex *mutex);
2866
2873 _wait_q_t wait_q;
2874};
2875
2876#define Z_CONDVAR_INITIALIZER(obj) \
2877 { \
2878 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2879 }
2880
2893__syscall int k_condvar_init(struct k_condvar *condvar);
2894
2901__syscall int k_condvar_signal(struct k_condvar *condvar);
2902
2910__syscall int k_condvar_broadcast(struct k_condvar *condvar);
2911
2929__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
2931
2942#define K_CONDVAR_DEFINE(name) \
2943 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
2944 Z_CONDVAR_INITIALIZER(name)
2953struct k_sem {
2954 _wait_q_t wait_q;
2955 unsigned int count;
2956 unsigned int limit;
2957
2958 _POLL_EVENT;
2959
2961
2962};
2963
2964#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
2965 { \
2966 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2967 .count = initial_count, \
2968 .limit = count_limit, \
2969 _POLL_EVENT_OBJ_INIT(obj) \
2970 }
2971
2990#define K_SEM_MAX_LIMIT UINT_MAX
2991
3007__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3008 unsigned int limit);
3009
3028__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3029
3040__syscall void k_sem_give(struct k_sem *sem);
3041
3051__syscall void k_sem_reset(struct k_sem *sem);
3052
3062__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3063
3067static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3068{
3069 return sem->count;
3070}
3071
3083#define K_SEM_DEFINE(name, initial_count, count_limit) \
3084 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3085 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3086 BUILD_ASSERT(((count_limit) != 0) && \
3087 ((initial_count) <= (count_limit)) && \
3088 ((count_limit) <= K_SEM_MAX_LIMIT));
3089
3096struct k_work_delayable;
3097struct k_work_sync;
3098
3115typedef void (*k_work_handler_t)(struct k_work *work);
3116
3132
3147int k_work_busy_get(const struct k_work *work);
3148
3162static inline bool k_work_is_pending(const struct k_work *work);
3163
3185 struct k_work *work);
3186
3195extern int k_work_submit(struct k_work *work);
3196
3222 struct k_work_sync *sync);
3223
3244
3275bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3276
3287
3308 k_thread_stack_t *stack, size_t stack_size,
3309 int prio, const struct k_work_queue_config *cfg);
3310
3320static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3321
3345int k_work_queue_drain(struct k_work_q *queue, bool plug);
3346
3361
3377
3389static inline struct k_work_delayable *
3391
3406
3421static inline bool k_work_delayable_is_pending(
3422 const struct k_work_delayable *dwork);
3423
3438 const struct k_work_delayable *dwork);
3439
3454 const struct k_work_delayable *dwork);
3455
3482 struct k_work_delayable *dwork,
3483 k_timeout_t delay);
3484
3499 k_timeout_t delay);
3500
3537 struct k_work_delayable *dwork,
3538 k_timeout_t delay);
3539
3553 k_timeout_t delay);
3554
3580 struct k_work_sync *sync);
3581
3603
3633 struct k_work_sync *sync);
3634
3635enum {
3640 /* The atomic API is used for all work and queue flags fields to
3641 * enforce sequential consistency in SMP environments.
3642 */
3643
3644 /* Bits that represent the work item states. At least nine of the
3645 * combinations are distinct valid stable states.
3646 */
3647 K_WORK_RUNNING_BIT = 0,
3648 K_WORK_CANCELING_BIT = 1,
3649 K_WORK_QUEUED_BIT = 2,
3650 K_WORK_DELAYED_BIT = 3,
3651
3652 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3653 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT),
3654
3655 /* Static work flags */
3656 K_WORK_DELAYABLE_BIT = 8,
3657 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3658
3659 /* Dynamic work queue flags */
3660 K_WORK_QUEUE_STARTED_BIT = 0,
3661 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3662 K_WORK_QUEUE_BUSY_BIT = 1,
3663 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3664 K_WORK_QUEUE_DRAIN_BIT = 2,
3665 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3666 K_WORK_QUEUE_PLUGGED_BIT = 3,
3667 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3668
3669 /* Static work queue flags */
3670 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3671 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3672
3676 /* Transient work flags */
3677
3683 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3684
3689 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3690
3696 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3697
3703 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3704};
3705
3707struct k_work {
3708 /* All fields are protected by the work module spinlock. No fields
3709 * are to be accessed except through kernel API.
3710 */
3711
3712 /* Node to link into k_work_q pending list. */
3714
3715 /* The function to be invoked by the work queue thread. */
3717
3718 /* The queue on which the work item was last submitted. */
3720
3721 /* State of the work item.
3722 *
3723 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3724 *
3725 * It can be RUNNING and CANCELING simultaneously.
3726 */
3728};
3729
3730#define Z_WORK_INITIALIZER(work_handler) { \
3731 .handler = work_handler, \
3732}
3733
3736 /* The work item. */
3737 struct k_work work;
3738
3739 /* Timeout used to submit work after a delay. */
3740 struct _timeout timeout;
3741
3742 /* The queue to which the work should be submitted. */
3744};
3745
3746#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3747 .work = { \
3748 .handler = work_handler, \
3749 .flags = K_WORK_DELAYABLE, \
3750 }, \
3751}
3752
3769#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3770 struct k_work_delayable work \
3771 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3772
3777/* Record used to wait for work to flush.
3778 *
3779 * The work item is inserted into the queue that will process (or is
3780 * processing) the item, and will be processed as soon as the item
3781 * completes. When the flusher is processed the semaphore will be
3782 * signaled, releasing the thread waiting for the flush.
3783 */
3784struct z_work_flusher {
3785 struct k_work work;
3786 struct k_sem sem;
3787};
3788
3789/* Record used to wait for work to complete a cancellation.
3790 *
3791 * The work item is inserted into a global queue of pending cancels.
3792 * When a cancelling work item goes idle any matching waiters are
3793 * removed from pending_cancels and are woken.
3794 */
3795struct z_work_canceller {
3796 sys_snode_t node;
3797 struct k_work *work;
3798 struct k_sem sem;
3799};
3800
3819 union {
3820 struct z_work_flusher flusher;
3821 struct z_work_canceller canceller;
3822 };
3823};
3824
3836 const char *name;
3837
3851};
3852
3854struct k_work_q {
3855 /* The thread that animates the work. */
3857
3858 /* All the following fields must be accessed only while the
3859 * work module spinlock is held.
3860 */
3861
3862 /* List of k_work items to be worked. */
3864
3865 /* Wait queue for idle work thread. */
3866 _wait_q_t notifyq;
3867
3868 /* Wait queue for threads waiting for the queue to drain. */
3869 _wait_q_t drainq;
3870
3871 /* Flags describing queue state. */
3873};
3874
3875/* Provide the implementation for inline functions declared above */
3876
3877static inline bool k_work_is_pending(const struct k_work *work)
3878{
3879 return k_work_busy_get(work) != 0;
3880}
3881
3882static inline struct k_work_delayable *
3884{
3885 return CONTAINER_OF(work, struct k_work_delayable, work);
3886}
3887
3889 const struct k_work_delayable *dwork)
3890{
3891 return k_work_delayable_busy_get(dwork) != 0;
3892}
3893
3895 const struct k_work_delayable *dwork)
3896{
3897 return z_timeout_expires(&dwork->timeout);
3898}
3899
3901 const struct k_work_delayable *dwork)
3902{
3903 return z_timeout_remaining(&dwork->timeout);
3904}
3905
3907{
3908 return &queue->thread;
3909}
3910
3913struct k_work_user;
3914
3929typedef void (*k_work_user_handler_t)(struct k_work_user *work);
3930
3935struct k_work_user_q {
3936 struct k_queue queue;
3937 struct k_thread thread;
3938};
3939
3940enum {
3941 K_WORK_USER_STATE_PENDING, /* Work item pending state */
3942};
3943
3944struct k_work_user {
3945 void *_reserved; /* Used by k_queue implementation. */
3948};
3949
3954#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
3955#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
3956#else
3957#define Z_WORK_USER_INITIALIZER(work_handler) \
3958 { \
3959 ._reserved = NULL, \
3960 .handler = work_handler, \
3961 .flags = 0 \
3962 }
3963#endif
3964
3976#define K_WORK_USER_DEFINE(work, work_handler) \
3977 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
3978
3988static inline void k_work_user_init(struct k_work_user *work,
3990{
3991 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
3992}
3993
4010static inline bool k_work_user_is_pending(struct k_work_user *work)
4011{
4012 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4013}
4014
4033static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4034 struct k_work_user *work)
4035{
4036 int ret = -EBUSY;
4037
4039 K_WORK_USER_STATE_PENDING)) {
4040 ret = k_queue_alloc_append(&work_q->queue, work);
4041
4042 /* Couldn't insert into the queue. Clear the pending bit
4043 * so the work item can be submitted again
4044 */
4045 if (ret != 0) {
4047 K_WORK_USER_STATE_PENDING);
4048 }
4049 }
4050
4051 return ret;
4052}
4053
4073extern void k_work_user_queue_start(struct k_work_user_q *work_q,
4075 size_t stack_size, int prio,
4076 const char *name);
4077
4088static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4089{
4090 return &work_q->thread;
4091}
4092
4099struct k_work_poll {
4100 struct k_work work;
4101 struct k_work_q *workq;
4102 struct z_poller poller;
4103 struct k_poll_event *events;
4104 int num_events;
4105 k_work_handler_t real_handler;
4106 struct _timeout timeout;
4107 int poll_result;
4108};
4109
4130#define K_WORK_DEFINE(work, work_handler) \
4131 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4132
4142extern void k_work_poll_init(struct k_work_poll *work,
4144
4179extern int k_work_poll_submit_to_queue(struct k_work_q *work_q,
4180 struct k_work_poll *work,
4181 struct k_poll_event *events,
4182 int num_events,
4184
4216extern int k_work_poll_submit(struct k_work_poll *work,
4217 struct k_poll_event *events,
4218 int num_events,
4220
4235extern int k_work_poll_cancel(struct k_work_poll *work);
4236
4248struct k_msgq {
4250 _wait_q_t wait_q;
4254 size_t msg_size;
4267
4268 _POLL_EVENT;
4269
4272
4274};
4280#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4281 { \
4282 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4283 .msg_size = q_msg_size, \
4284 .max_msgs = q_max_msgs, \
4285 .buffer_start = q_buffer, \
4286 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4287 .read_ptr = q_buffer, \
4288 .write_ptr = q_buffer, \
4289 .used_msgs = 0, \
4290 _POLL_EVENT_OBJ_INIT(obj) \
4291 }
4292
4298#define K_MSGQ_FLAG_ALLOC BIT(0)
4299
4305 size_t msg_size;
4310};
4311
4312
4333#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4334 static char __noinit __aligned(q_align) \
4335 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4336 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4337 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4338 q_msg_size, q_max_msgs)
4339
4356void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4357 uint32_t max_msgs);
4358
4378__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4379 uint32_t max_msgs);
4380
4392
4414__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4415
4436__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4437
4452__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4453
4470__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4471
4481__syscall void k_msgq_purge(struct k_msgq *msgq);
4482
4494
4503__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4504 struct k_msgq_attrs *attrs);
4505
4506
4507static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4508{
4509 return msgq->max_msgs - msgq->used_msgs;
4510}
4511
4522
4523static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4524{
4525 return msgq->used_msgs;
4526}
4527
4542 uint32_t _mailbox;
4544 size_t size;
4548 void *tx_data;
4550 void *_rx_data;
4558 k_tid_t _syncing_thread;
4559#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4561 struct k_sem *_async_sem;
4562#endif
4563};
4568struct k_mbox {
4570 _wait_q_t tx_msg_queue;
4572 _wait_q_t rx_msg_queue;
4574
4576};
4581#define Z_MBOX_INITIALIZER(obj) \
4582 { \
4583 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4584 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4585 }
4586
4600#define K_MBOX_DEFINE(name) \
4601 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4602 Z_MBOX_INITIALIZER(name) \
4603
4611extern void k_mbox_init(struct k_mbox *mbox);
4612
4632extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4634
4648extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4649 struct k_sem *sem);
4650
4668extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4669 void *buffer, k_timeout_t timeout);
4670
4684extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4685
4695struct k_pipe {
4696 unsigned char *buffer;
4697 size_t size;
4698 size_t bytes_used;
4699 size_t read_index;
4703 struct {
4704 _wait_q_t readers;
4705 _wait_q_t writers;
4708 _POLL_EVENT;
4709
4713};
4714
4718#define K_PIPE_FLAG_ALLOC BIT(0)
4720#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4721 { \
4722 .buffer = pipe_buffer, \
4723 .size = pipe_buffer_size, \
4724 .bytes_used = 0, \
4725 .read_index = 0, \
4726 .write_index = 0, \
4727 .lock = {}, \
4728 .wait_q = { \
4729 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4730 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4731 }, \
4732 _POLL_EVENT_OBJ_INIT(obj) \
4733 .flags = 0, \
4734 }
4735
4753#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4754 static unsigned char __noinit __aligned(pipe_align) \
4755 _k_pipe_buf_##name[pipe_buffer_size]; \
4756 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4757 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4758
4770void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4771
4784
4800__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4801
4820__syscall int k_pipe_put(struct k_pipe *pipe, void *data,
4821 size_t bytes_to_write, size_t *bytes_written,
4822 size_t min_xfer, k_timeout_t timeout);
4823
4843__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
4844 size_t bytes_to_read, size_t *bytes_read,
4845 size_t min_xfer, k_timeout_t timeout);
4846
4855__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
4856
4865__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
4866
4877__syscall void k_pipe_flush(struct k_pipe *pipe);
4878
4890__syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
4891
4898struct k_mem_slab {
4899 _wait_q_t wait_q;
4900 struct k_spinlock lock;
4901 uint32_t num_blocks;
4902 size_t block_size;
4903 char *buffer;
4904 char *free_list;
4905 uint32_t num_used;
4906#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
4907 uint32_t max_used;
4908#endif
4909
4911};
4912
4913#define Z_MEM_SLAB_INITIALIZER(obj, slab_buffer, slab_block_size, \
4914 slab_num_blocks) \
4915 { \
4916 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4917 .lock = {}, \
4918 .num_blocks = slab_num_blocks, \
4919 .block_size = slab_block_size, \
4920 .buffer = slab_buffer, \
4921 .free_list = NULL, \
4922 .num_used = 0, \
4923 }
4924
4925
4959#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
4960 char __noinit_named(k_mem_slab_buf_##name) \
4961 __aligned(WB_UP(slab_align)) \
4962 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4963 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4964 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4965 WB_UP(slab_block_size), slab_num_blocks)
4966
4981#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
4982 static char __noinit_named(k_mem_slab_buf_##name) \
4983 __aligned(WB_UP(slab_align)) \
4984 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4985 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4986 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4987 WB_UP(slab_block_size), slab_num_blocks)
4988
5010extern int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5011 size_t block_size, uint32_t num_blocks);
5012
5035extern int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5037
5047extern void k_mem_slab_free(struct k_mem_slab *slab, void **mem);
5048
5059static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5060{
5061 return slab->num_used;
5062}
5063
5074static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5075{
5076#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5077 return slab->max_used;
5078#else
5079 ARG_UNUSED(slab);
5080 return 0;
5081#endif
5082}
5083
5094static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5095{
5096 return slab->num_blocks - slab->num_used;
5097}
5098
5111int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5112
5124int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5125
5133/* kernel synchronized heap struct */
5134
5135struct k_heap {
5137 _wait_q_t wait_q;
5139};
5140
5154void k_heap_init(struct k_heap *h, void *mem, size_t bytes);
5155
5175void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5177
5199void *k_heap_alloc(struct k_heap *h, size_t bytes,
5201
5212void k_heap_free(struct k_heap *h, void *mem);
5213
5214/* Hand-calculated minimum heap sizes needed to return a successful
5215 * 1-byte allocation. See details in lib/os/heap.[ch]
5216 */
5217#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5218
5235#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5236 char in_section \
5237 __aligned(8) /* CHUNK_UNIT */ \
5238 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5239 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5240 .heap = { \
5241 .init_mem = kheap_##name, \
5242 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5243 }, \
5244 }
5245
5260#define K_HEAP_DEFINE(name, bytes) \
5261 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5262 __noinit_named(kheap_buf_##name))
5263
5278#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5279 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5280
5309extern void *k_aligned_alloc(size_t align, size_t size);
5310
5322extern void *k_malloc(size_t size);
5323
5334extern void k_free(void *ptr);
5335
5347extern void *k_calloc(size_t nmemb, size_t size);
5348
5351/* polling API - PRIVATE */
5352
5353#ifdef CONFIG_POLL
5354#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5355#else
5356#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5357#endif
5358
5359/* private - types bit positions */
5360enum _poll_types_bits {
5361 /* can be used to ignore an event */
5362 _POLL_TYPE_IGNORE,
5363
5364 /* to be signaled by k_poll_signal_raise() */
5365 _POLL_TYPE_SIGNAL,
5366
5367 /* semaphore availability */
5368 _POLL_TYPE_SEM_AVAILABLE,
5369
5370 /* queue/FIFO/LIFO data availability */
5371 _POLL_TYPE_DATA_AVAILABLE,
5372
5373 /* msgq data availability */
5374 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5375
5376 /* pipe data availability */
5377 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5378
5379 _POLL_NUM_TYPES
5380};
5381
5382#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5383
5384/* private - states bit positions */
5385enum _poll_states_bits {
5386 /* default state when creating event */
5387 _POLL_STATE_NOT_READY,
5388
5389 /* signaled by k_poll_signal_raise() */
5390 _POLL_STATE_SIGNALED,
5391
5392 /* semaphore is available */
5393 _POLL_STATE_SEM_AVAILABLE,
5394
5395 /* data is available to read on queue/FIFO/LIFO */
5396 _POLL_STATE_DATA_AVAILABLE,
5397
5398 /* queue/FIFO/LIFO wait was cancelled */
5399 _POLL_STATE_CANCELLED,
5400
5401 /* data is available to read on a message queue */
5402 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5403
5404 /* data is available to read from a pipe */
5405 _POLL_STATE_PIPE_DATA_AVAILABLE,
5406
5407 _POLL_NUM_STATES
5408};
5409
5410#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5411
5412#define _POLL_EVENT_NUM_UNUSED_BITS \
5413 (32 - (0 \
5414 + 8 /* tag */ \
5415 + _POLL_NUM_TYPES \
5416 + _POLL_NUM_STATES \
5417 + 1 /* modes */ \
5418 ))
5419
5420/* end of polling API - PRIVATE */
5421
5422
5429/* Public polling API */
5430
5431/* public - values for k_poll_event.type bitfield */
5432#define K_POLL_TYPE_IGNORE 0
5433#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5434#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5435#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5436#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5437#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5438#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5439
5440/* public - polling modes */
5442 /* polling thread does not take ownership of objects when available */
5444
5447
5448/* public - values for k_poll_event.state bitfield */
5449#define K_POLL_STATE_NOT_READY 0
5450#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5451#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5452#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5453#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5454#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5455#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5456#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5457
5458/* public - poll signal object */
5462
5467 unsigned int signaled;
5468
5471};
5472
5473#define K_POLL_SIGNAL_INITIALIZER(obj) \
5474 { \
5475 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5476 .signaled = 0, \
5477 .result = 0, \
5478 }
5485 sys_dnode_t _node;
5486
5488 struct z_poller *poller;
5489
5492
5494 uint32_t type:_POLL_NUM_TYPES;
5495
5497 uint32_t state:_POLL_NUM_STATES;
5498
5501
5503 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5504
5506 union {
5507 void *obj;
5509 struct k_sem *sem;
5510 struct k_fifo *fifo;
5511 struct k_queue *queue;
5512 struct k_msgq *msgq;
5513#ifdef CONFIG_PIPES
5514 struct k_pipe *pipe;
5515#endif
5516 };
5517};
5518
5519#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5520 { \
5521 .poller = NULL, \
5522 .type = _event_type, \
5523 .state = K_POLL_STATE_NOT_READY, \
5524 .mode = _event_mode, \
5525 .unused = 0, \
5526 { \
5527 .obj = _event_obj, \
5528 }, \
5529 }
5530
5531#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5532 event_tag) \
5533 { \
5534 .tag = event_tag, \
5535 .type = _event_type, \
5536 .state = K_POLL_STATE_NOT_READY, \
5537 .mode = _event_mode, \
5538 .unused = 0, \
5539 { \
5540 .obj = _event_obj, \
5541 }, \
5542 }
5543
5559extern void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5560 int mode, void *obj);
5561
5605__syscall int k_poll(struct k_poll_event *events, int num_events,
5607
5616__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5617
5618/*
5619 * @brief Reset a poll signal object's state to unsignaled.
5620 *
5621 * @param sig A poll signal object
5622 */
5623__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5624
5635__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5636 unsigned int *signaled, int *result);
5637
5662__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5663
5667extern void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state);
5668
5689static inline void k_cpu_idle(void)
5690{
5691 arch_cpu_idle();
5692}
5693
5708static inline void k_cpu_atomic_idle(unsigned int key)
5709{
5711}
5712
5720#ifdef ARCH_EXCEPT
5721/* This architecture has direct support for triggering a CPU exception */
5722#define z_except_reason(reason) ARCH_EXCEPT(reason)
5723#else
5724
5725#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5726#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5727#else
5728#define __EXCEPT_LOC()
5729#endif
5730
5731/* NOTE: This is the implementation for arches that do not implement
5732 * ARCH_EXCEPT() to generate a real CPU exception.
5733 *
5734 * We won't have a real exception frame to determine the PC value when
5735 * the oops occurred, so print file and line number before we jump into
5736 * the fatal error handler.
5737 */
5738#define z_except_reason(reason) do { \
5739 __EXCEPT_LOC(); \
5740 z_fatal_error(reason, NULL); \
5741 } while (false)
5742
5743#endif /* _ARCH__EXCEPT */
5744
5756#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5757
5766#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5767
5768/*
5769 * private APIs that are utilized by one or more public APIs
5770 */
5771
5775extern void z_init_thread_base(struct _thread_base *thread_base,
5776 int priority, uint32_t initial_state,
5777 unsigned int options);
5778
5779#ifdef CONFIG_MULTITHREADING
5783extern void z_init_static_threads(void);
5784#else
5788#define z_init_static_threads() do { } while (false)
5789#endif
5790
5794extern bool z_is_thread_essential(void);
5795
5796#ifdef CONFIG_SMP
5797void z_smp_thread_init(void *arg, struct k_thread *thread);
5798void z_smp_thread_swap(void);
5799#endif
5800
5804extern void z_timer_expiration_handler(struct _timeout *t);
5805
5806#ifdef CONFIG_PRINTK
5814__syscall void k_str_out(char *c, size_t n);
5815#endif
5816
5837__syscall int k_float_disable(struct k_thread *thread);
5838
5877__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
5878
5888
5896
5907
5918
5927
5936
5937#ifdef __cplusplus
5938}
5939#endif
5940
5941#include <zephyr/tracing/tracing.h>
5942#include <syscalls/kernel.h>
5943
5944#endif /* !_ASMLANGUAGE */
5945
5946#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition: misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:44
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:46
static struct k_thread thread[2]
Definition: atomic.c:26
long atomic_t
Definition: atomic.h:22
ZTEST_BMEM int timeout
Definition: main.c:31
ZTEST_BMEM int count
Definition: main.c:33
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:131
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:198
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:176
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1707
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1672
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1688
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1722
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1648
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5689
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5708
struct _dnode sys_dnode_t
Definition: dlist.h:49
struct _dnode sys_dlist_t
Definition: dlist.h:48
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
void k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
void k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
void k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
void k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:323
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:1021
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5059
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5074
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5094
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5441
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5443
@ K_POLL_NUM_MODES
Definition: kernel.h:5445
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:335
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:121
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:220
#define EBUSY
Definition: errno.h:55
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
void k_thread_system_pool_assign(struct k_thread *thread)
Assign the system heap as a thread's resource pool.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:378
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:471
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:562
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:103
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1429
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1413
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1572
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:3906
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:3877
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:3894
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4033
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4010
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3115
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:3888
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:3988
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition: kernel.h:4088
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:3883
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:3900
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:3929
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3689
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3696
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3703
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3683
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:88
@ K_ISR
Definition: kernel.h:89
@ K_COOP_THREAD
Definition: kernel.h:90
@ K_PREEMPT_THREAD
Definition: kernel.h:91
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
static ZTEST_BMEM volatile int ret
Definition: k_float_disable.c:28
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition: kernel_structs.h:255
struct k_mem_slab ms
Definition: kobject.c:1319
struct k_mutex mutex
Definition: kobject.c:1321
struct k_thread t
Definition: kobject.c:1327
Memory Statistics.
struct k_msgq msgq
Definition: test_msgq_contexts.c:12
flags
Definition: parser.h:96
state
Definition: parser_state.h:29
char c
Definition: printk.c:112
void * ptr
Definition: printk.c:120
static struct k_work work[2]
Definition: main.c:16
struct _sfnode sys_sfnode_t
Definition: sflist.h:39
struct _sflist sys_sflist_t
Definition: sflist.h:46
struct _slist sys_slist_t
Definition: slist.h:40
struct _snode sys_snode_t
Definition: slist.h:33
char stack[2048]
Definition: main.c:22
static struct k_spinlock lock
Definition: spinlock_error_case.c:13
static k_spinlock_key_t key
Definition: spinlock_error_case.c:15
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition: stdint.h:104
__INT32_TYPE__ int32_t
Definition: stdint.h:74
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__INT64_TYPE__ int64_t
Definition: stdint.h:75
Structure to store initialization entry information.
Definition: init.h:51
Definition: kernel.h:2872
_wait_q_t wait_q
Definition: kernel.h:2873
Definition: kernel.h:2111
struct k_spinlock lock
Definition: kernel.h:2114
uint32_t events
Definition: kernel.h:2113
_wait_q_t wait_q
Definition: kernel.h:2112
Definition: kernel.h:2252
futex structure
Definition: kernel.h:2032
atomic_t val
Definition: kernel.h:2033
Definition: kernel.h:5135
struct k_spinlock lock
Definition: kernel.h:5138
struct sys_heap heap
Definition: kernel.h:5136
_wait_q_t wait_q
Definition: kernel.h:5137
Definition: kernel.h:2486
Mailbox Message Structure.
Definition: kernel.h:4540
struct k_mem_block tx_block
Definition: kernel.h:4552
k_tid_t tx_target_thread
Definition: kernel.h:4556
void * tx_data
Definition: kernel.h:4548
k_tid_t rx_source_thread
Definition: kernel.h:4554
uint32_t info
Definition: kernel.h:4546
size_t size
Definition: kernel.h:4544
Mailbox Structure.
Definition: kernel.h:4568
_wait_q_t tx_msg_queue
Definition: kernel.h:4570
struct k_spinlock lock
Definition: kernel.h:4573
_wait_q_t rx_msg_queue
Definition: kernel.h:4572
Definition: mempool_heap.h:24
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4303
uint32_t used_msgs
Definition: kernel.h:4309
size_t msg_size
Definition: kernel.h:4305
uint32_t max_msgs
Definition: kernel.h:4307
Message Queue Structure.
Definition: kernel.h:4248
size_t msg_size
Definition: kernel.h:4254
char * read_ptr
Definition: kernel.h:4262
uint32_t used_msgs
Definition: kernel.h:4266
char * buffer_end
Definition: kernel.h:4260
struct k_spinlock lock
Definition: kernel.h:4252
char * write_ptr
Definition: kernel.h:4264
char * buffer_start
Definition: kernel.h:4258
uint8_t flags
Definition: kernel.h:4268
_wait_q_t wait_q
Definition: kernel.h:4250
uint32_t max_msgs
Definition: kernel.h:4256
Definition: kernel.h:2764
uint32_t lock_count
Definition: kernel.h:2771
_wait_q_t wait_q
Definition: kernel.h:2766
int owner_orig_prio
Definition: kernel.h:2774
struct k_thread * owner
Definition: kernel.h:2768
Definition: kernel.h:4695
struct k_pipe::@176 wait_q
uint8_t flags
Definition: kernel.h:4708
_wait_q_t readers
Definition: kernel.h:4704
size_t write_index
Definition: kernel.h:4700
size_t bytes_used
Definition: kernel.h:4698
struct k_spinlock lock
Definition: kernel.h:4701
_wait_q_t writers
Definition: kernel.h:4705
size_t size
Definition: kernel.h:4697
unsigned char * buffer
Definition: kernel.h:4696
size_t read_index
Definition: kernel.h:4699
Poll Event.
Definition: kernel.h:5483
struct k_poll_signal * signal
Definition: kernel.h:5508
uint32_t tag
Definition: kernel.h:5491
struct k_fifo * fifo
Definition: kernel.h:5510
struct k_msgq * msgq
Definition: kernel.h:5512
struct k_queue * queue
Definition: kernel.h:5511
uint32_t unused
Definition: kernel.h:5503
uint32_t type
Definition: kernel.h:5494
struct k_sem * sem
Definition: kernel.h:5509
uint32_t state
Definition: kernel.h:5497
uint32_t mode
Definition: kernel.h:5500
struct z_poller * poller
Definition: kernel.h:5488
void * obj
Definition: kernel.h:5507
Definition: kernel.h:5459
sys_dlist_t poll_events
Definition: kernel.h:5461
int result
Definition: kernel.h:5470
unsigned int signaled
Definition: kernel.h:5467
Kernel Spin Lock.
Definition: spinlock.h:43
Definition: thread.h:192
Definition: thread.h:245
struct _thread_base base
Definition: thread.h:247
struct k_heap * resource_pool
Definition: thread.h:325
struct __thread_entry entry
Definition: thread.h:271
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3735
struct _timeout timeout
Definition: kernel.h:3740
struct k_work_q * queue
Definition: kernel.h:3743
struct k_work work
Definition: kernel.h:3737
A structure used to hold work until it can be processed.
Definition: kernel.h:3854
sys_slist_t pending
Definition: kernel.h:3863
_wait_q_t drainq
Definition: kernel.h:3869
_wait_q_t notifyq
Definition: kernel.h:3866
uint32_t flags
Definition: kernel.h:3872
struct k_thread thread
Definition: kernel.h:3856
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3831
const char * name
Definition: kernel.h:3836
bool no_yield
Definition: kernel.h:3850
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3818
struct z_work_canceller canceller
Definition: kernel.h:3821
struct z_work_flusher flusher
Definition: kernel.h:3820
A structure used to submit work.
Definition: kernel.h:3707
k_work_handler_t handler
Definition: kernel.h:3716
uint32_t flags
Definition: kernel.h:3727
struct k_work_q * queue
Definition: kernel.h:3719
sys_snode_t node
Definition: kernel.h:3713
Definition: errno.c:37
Definition: sys_heap.h:56
Definition: mem_stats.h:24
static fdata_t data[2]
Definition: test_fifo_contexts.c:15
static struct k_mbox mbox
Definition: test_mbox_api.c:28
static ZTEST_BMEM char buffer[8]
Definition: test_mbox_api.c:551
static struct k_pipe pipe
Definition: test_mutex_error.c:18
struct k_queue queue
Definition: test_queue_contexts.c:17
static int init_prio
Definition: test_sched_timeslice_and_lock.c:15
static ZTEST_BMEM struct thread_data expected
static uint64_t k_ticks_to_ms_floor64(uint64_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1103
static uint32_t k_ticks_to_ms_floor32(uint32_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1089
static struct k_timer timer[3]
Definition: timeout_order.c:13
static struct k_sem sem[3]
Definition: timeout_order.c:14
static void handler(struct k_timer *timer)
Definition: main.c:19
static const intptr_t user_data[5]
Definition: main.c:588
Macros to abstract toolchain specific capabilities.
static struct k_work_delayable dwork
Definition: main.c:50