13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
16#if !defined(_ASMLANGUAGE)
33BUILD_ASSERT(
sizeof(
int32_t) ==
sizeof(
int));
34BUILD_ASSERT(
sizeof(
int64_t) ==
sizeof(
long long));
35BUILD_ASSERT(
sizeof(
intptr_t) ==
sizeof(
long));
47#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
48#error Zero available thread priorities defined!
51#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
52#define K_PRIO_PREEMPT(x) (x)
54#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
55#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
56#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
57#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
58#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
61#define _POLL_EVENT_OBJ_INIT(obj) \
62 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
63#define _POLL_EVENT sys_dlist_t poll_events
65#define _POLL_EVENT_OBJ_INIT(obj)
172#define K_ESSENTIAL (BIT(0))
174#if defined(CONFIG_FPU_SHARING)
185#define K_FP_REGS (BIT(K_FP_IDX))
194#define K_USER (BIT(2))
204#define K_INHERIT_PERMS (BIT(3))
215#define K_CALLBACK_STATE (BIT(4))
220#if defined(CONFIG_ARC_DSP_SHARING)
231#define K_ARC_DSP_REGS (BIT(K_DSP_IDX))
234#if defined(CONFIG_ARC_AGU_SHARING)
244#define K_ARC_AGU_REGS (BIT(K_AGU_IDX))
251#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
261#define K_SSE_REGS (BIT(7))
267#if !defined(_ASMLANGUAGE)
320 void *p1,
void *p2,
void *p3,
361#define k_thread_access_grant(thread, ...) \
362 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
384#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
405__syscall
int k_thread_stack_space_get(
const struct k_thread *
thread,
409#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
548__syscall
k_tid_t z_current_get(
void);
550#ifdef CONFIG_THREAD_LOCAL_STORAGE
552extern __thread
k_tid_t z_tls_current;
564#ifdef CONFIG_THREAD_LOCAL_STORAGE
565 return z_tls_current;
567 return z_current_get();
611#ifdef CONFIG_SYS_CLOCK_EXISTS
622static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
625 return z_timeout_expires(&
t->
base.timeout);
637static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
640 return z_timeout_remaining(&
t->
base.timeout);
652struct _static_thread_data {
655 unsigned int init_stack_size;
663 void (*init_abort)(void);
664 const char *init_name;
667#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
669 prio, options, delay, tname) \
671 .init_thread = (thread), \
672 .init_stack = (stack), \
673 .init_stack_size = (stack_size), \
674 .init_entry = (k_thread_entry_t)entry, \
675 .init_p1 = (void *)p1, \
676 .init_p2 = (void *)p2, \
677 .init_p3 = (void *)p3, \
678 .init_prio = (prio), \
679 .init_options = (options), \
680 .init_delay = (delay), \
681 .init_name = STRINGIFY(tname), \
717#define K_THREAD_DEFINE(name, stack_size, \
719 prio, options, delay) \
720 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
721 struct k_thread _k_thread_obj_##name; \
722 STRUCT_SECTION_ITERABLE(_static_thread_data, _k_thread_data_##name) = \
723 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
724 _k_thread_stack_##name, stack_size, \
725 entry, p1, p2, p3, prio, options, delay, \
727 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
768#ifdef CONFIG_SCHED_DEADLINE
804#ifdef CONFIG_SCHED_CPU_MASK
1023 extern bool z_sys_post_kernel;
1025 return !z_sys_post_kernel;
1157#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1171#define K_NSEC(t) Z_TIMEOUT_NS(t)
1185#define K_USEC(t) Z_TIMEOUT_US(t)
1197#define K_CYC(t) Z_TIMEOUT_CYC(t)
1209#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1221#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1233#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1245#define K_MINUTES(m) K_SECONDS((m) * 60)
1257#define K_HOURS(h) K_MINUTES((h) * 60)
1267#define K_FOREVER Z_FOREVER
1269#ifdef CONFIG_TIMEOUT_64BIT
1282#define K_TIMEOUT_ABS_TICKS(t) \
1283 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1296#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1310#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1324#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1338#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1362 void (*expiry_fn)(
struct k_timer *
timer);
1365 void (*stop_fn)(
struct k_timer *
timer);
1379#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1383 .fn = z_timer_expiration_handler, \
1386 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1387 .expiry_fn = expiry, \
1442#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1443 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1444 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1527#ifdef CONFIG_SYS_CLOCK_EXISTS
1541static inline k_ticks_t z_impl_k_timer_expires_ticks(
1542 const struct k_timer *
timer)
1544 return z_timeout_expires(&
timer->timeout);
1556static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1557 const struct k_timer *
timer)
1559 return z_timeout_remaining(&
timer->timeout);
1596static inline void z_impl_k_timer_user_data_set(
struct k_timer *
timer,
1611static inline void *z_impl_k_timer_user_data_get(
const struct k_timer *
timer)
1613 return timer->user_data;
1693 delta = uptime - *reftime;
1724 if (!
IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1725 __ASSERT(0,
"64-bit cycle counter not enabled on this platform. "
1726 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1751#define Z_QUEUE_INITIALIZER(obj) \
1753 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1755 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1756 _POLL_EVENT_OBJ_INIT(obj) \
1759extern void *z_queue_node_peek(
sys_sfnode_t *node,
bool needs_free);
1980static inline int z_impl_k_queue_is_empty(
struct k_queue *
queue)
2016#define K_QUEUE_DEFINE(name) \
2017 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2018 Z_QUEUE_INITIALIZER(name)
2022#ifdef CONFIG_USERSPACE
2043struct z_futex_data {
2048#define Z_FUTEX_DATA_INITIALIZER(obj) \
2050 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2119#define Z_EVENT_INITIALIZER(obj) \
2121 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2246#define K_EVENT_DEFINE(name) \
2247 STRUCT_SECTION_ITERABLE(k_event, name) = \
2248 Z_EVENT_INITIALIZER(name);
2253 struct k_queue _queue;
2259#define Z_FIFO_INITIALIZER(obj) \
2261 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2281#define k_fifo_init(fifo) \
2283 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2284 k_queue_init(&(fifo)->_queue); \
2285 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2299#define k_fifo_cancel_wait(fifo) \
2301 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2302 k_queue_cancel_wait(&(fifo)->_queue); \
2303 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2318#define k_fifo_put(fifo, data) \
2320 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2321 k_queue_append(&(fifo)->_queue, data); \
2322 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2341#define k_fifo_alloc_put(fifo, data) \
2343 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2344 int ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2345 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, ret); \
2363#define k_fifo_put_list(fifo, head, tail) \
2365 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2366 k_queue_append_list(&(fifo)->_queue, head, tail); \
2367 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2383#define k_fifo_put_slist(fifo, list) \
2385 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2386 k_queue_merge_slist(&(fifo)->_queue, list); \
2387 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2407#define k_fifo_get(fifo, timeout) \
2409 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2410 void *ret = k_queue_get(&(fifo)->_queue, timeout); \
2411 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, ret); \
2428#define k_fifo_is_empty(fifo) \
2429 k_queue_is_empty(&(fifo)->_queue)
2444#define k_fifo_peek_head(fifo) \
2446 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2447 void *ret = k_queue_peek_head(&(fifo)->_queue); \
2448 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, ret); \
2463#define k_fifo_peek_tail(fifo) \
2465 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2466 void *ret = k_queue_peek_tail(&(fifo)->_queue); \
2467 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, ret); \
2480#define K_FIFO_DEFINE(name) \
2481 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_fifo, name) = \
2482 Z_FIFO_INITIALIZER(name)
2487 struct k_queue _queue;
2494#define Z_LIFO_INITIALIZER(obj) \
2496 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2516#define k_lifo_init(lifo) \
2518 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2519 k_queue_init(&(lifo)->_queue); \
2520 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2535#define k_lifo_put(lifo, data) \
2537 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2538 k_queue_prepend(&(lifo)->_queue, data); \
2539 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2558#define k_lifo_alloc_put(lifo, data) \
2560 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2561 int ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2562 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, ret); \
2583#define k_lifo_get(lifo, timeout) \
2585 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2586 void *ret = k_queue_get(&(lifo)->_queue, timeout); \
2587 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, ret); \
2600#define K_LIFO_DEFINE(name) \
2601 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_lifo, name) = \
2602 Z_LIFO_INITIALIZER(name)
2609#define K_STACK_FLAG_ALLOC ((uint8_t)1)
2616 stack_data_t *base, *next, *top;
2623#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2625 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2626 .base = stack_buffer, \
2627 .next = stack_buffer, \
2628 .top = stack_buffer + stack_num_entries, \
2732#define K_STACK_DEFINE(name, stack_num_entries) \
2733 stack_data_t __noinit \
2734 _k_stack_buf_##name[stack_num_entries]; \
2735 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2736 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2748extern struct k_work_q k_sys_work_q;
2782#define Z_MUTEX_INITIALIZER(obj) \
2784 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2787 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2803#define K_MUTEX_DEFINE(name) \
2804 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2805 Z_MUTEX_INITIALIZER(name)
2876#define Z_CONDVAR_INITIALIZER(obj) \
2878 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2942#define K_CONDVAR_DEFINE(name) \
2943 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
2944 Z_CONDVAR_INITIALIZER(name)
2964#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
2966 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2967 .count = initial_count, \
2968 .limit = count_limit, \
2969 _POLL_EVENT_OBJ_INIT(obj) \
2990#define K_SEM_MAX_LIMIT UINT_MAX
3008 unsigned int limit);
3067static inline unsigned int z_impl_k_sem_count_get(
struct k_sem *
sem)
3083#define K_SEM_DEFINE(name, initial_count, count_limit) \
3084 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3085 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3086 BUILD_ASSERT(((count_limit) != 0) && \
3087 ((initial_count) <= (count_limit)) && \
3088 ((count_limit) <= K_SEM_MAX_LIMIT));
3647 K_WORK_RUNNING_BIT = 0,
3648 K_WORK_CANCELING_BIT = 1,
3649 K_WORK_QUEUED_BIT = 2,
3650 K_WORK_DELAYED_BIT = 3,
3652 K_WORK_MASK =
BIT(K_WORK_DELAYED_BIT) |
BIT(K_WORK_QUEUED_BIT)
3653 |
BIT(K_WORK_RUNNING_BIT) |
BIT(K_WORK_CANCELING_BIT),
3656 K_WORK_DELAYABLE_BIT = 8,
3657 K_WORK_DELAYABLE =
BIT(K_WORK_DELAYABLE_BIT),
3660 K_WORK_QUEUE_STARTED_BIT = 0,
3661 K_WORK_QUEUE_STARTED =
BIT(K_WORK_QUEUE_STARTED_BIT),
3662 K_WORK_QUEUE_BUSY_BIT = 1,
3663 K_WORK_QUEUE_BUSY =
BIT(K_WORK_QUEUE_BUSY_BIT),
3664 K_WORK_QUEUE_DRAIN_BIT = 2,
3665 K_WORK_QUEUE_DRAIN =
BIT(K_WORK_QUEUE_DRAIN_BIT),
3666 K_WORK_QUEUE_PLUGGED_BIT = 3,
3667 K_WORK_QUEUE_PLUGGED =
BIT(K_WORK_QUEUE_PLUGGED_BIT),
3670 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3671 K_WORK_QUEUE_NO_YIELD =
BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3730#define Z_WORK_INITIALIZER(work_handler) { \
3731 .handler = work_handler, \
3746#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3748 .handler = work_handler, \
3749 .flags = K_WORK_DELAYABLE, \
3769#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3770 struct k_work_delayable work \
3771 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3784struct z_work_flusher {
3795struct z_work_canceller {
3908 return &
queue->thread;
3935struct k_work_user_q {
3936 struct k_queue
queue;
3941 K_WORK_USER_STATE_PENDING,
3954#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
3955#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
3957#define Z_WORK_USER_INITIALIZER(work_handler) \
3959 ._reserved = NULL, \
3960 .handler = work_handler, \
3976#define K_WORK_USER_DEFINE(work, work_handler) \
3977 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
3991 *
work = (
struct k_work_user)Z_WORK_USER_INITIALIZER(
handler);
4034 struct k_work_user *
work)
4039 K_WORK_USER_STATE_PENDING)) {
4047 K_WORK_USER_STATE_PENDING);
4075 size_t stack_size,
int prio,
4090 return &work_q->thread;
4102 struct z_poller poller;
4130#define K_WORK_DEFINE(work, work_handler) \
4131 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4180 struct k_work_poll *
work,
4280#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4282 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4283 .msg_size = q_msg_size, \
4284 .max_msgs = q_max_msgs, \
4285 .buffer_start = q_buffer, \
4286 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4287 .read_ptr = q_buffer, \
4288 .write_ptr = q_buffer, \
4290 _POLL_EVENT_OBJ_INIT(obj) \
4298#define K_MSGQ_FLAG_ALLOC BIT(0)
4333#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4334 static char __noinit __aligned(q_align) \
4335 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4336 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4337 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4338 q_msg_size, q_max_msgs)
4559#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4561 struct k_sem *_async_sem;
4581#define Z_MBOX_INITIALIZER(obj) \
4583 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4584 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4600#define K_MBOX_DEFINE(name) \
4601 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4602 Z_MBOX_INITIALIZER(name) \
4718#define K_PIPE_FLAG_ALLOC BIT(0)
4720#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4722 .buffer = pipe_buffer, \
4723 .size = pipe_buffer_size, \
4729 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4730 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4732 _POLL_EVENT_OBJ_INIT(obj) \
4753#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4754 static unsigned char __noinit __aligned(pipe_align) \
4755 _k_pipe_buf_##name[pipe_buffer_size]; \
4756 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4757 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4821 size_t bytes_to_write,
size_t *bytes_written,
4844 size_t bytes_to_read,
size_t *bytes_read,
4906#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
4913#define Z_MEM_SLAB_INITIALIZER(obj, slab_buffer, slab_block_size, \
4916 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4918 .num_blocks = slab_num_blocks, \
4919 .block_size = slab_block_size, \
4920 .buffer = slab_buffer, \
4921 .free_list = NULL, \
4959#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
4960 char __noinit_named(k_mem_slab_buf_##name) \
4961 __aligned(WB_UP(slab_align)) \
4962 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4963 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4964 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4965 WB_UP(slab_block_size), slab_num_blocks)
4981#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
4982 static char __noinit_named(k_mem_slab_buf_##name) \
4983 __aligned(WB_UP(slab_align)) \
4984 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4985 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4986 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4987 WB_UP(slab_block_size), slab_num_blocks)
5011 size_t block_size,
uint32_t num_blocks);
5061 return slab->num_used;
5076#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5077 return slab->max_used;
5096 return slab->num_blocks - slab->num_used;
5217#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5235#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5238 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5239 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5241 .init_mem = kheap_##name, \
5242 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5260#define K_HEAP_DEFINE(name, bytes) \
5261 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5262 __noinit_named(kheap_buf_##name))
5278#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5279 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5354#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5356#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5360enum _poll_types_bits {
5368 _POLL_TYPE_SEM_AVAILABLE,
5371 _POLL_TYPE_DATA_AVAILABLE,
5374 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5377 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5382#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5385enum _poll_states_bits {
5387 _POLL_STATE_NOT_READY,
5390 _POLL_STATE_SIGNALED,
5393 _POLL_STATE_SEM_AVAILABLE,
5396 _POLL_STATE_DATA_AVAILABLE,
5399 _POLL_STATE_CANCELLED,
5402 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5405 _POLL_STATE_PIPE_DATA_AVAILABLE,
5410#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5412#define _POLL_EVENT_NUM_UNUSED_BITS \
5416 + _POLL_NUM_STATES \
5432#define K_POLL_TYPE_IGNORE 0
5433#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5434#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5435#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5436#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5437#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5438#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5449#define K_POLL_STATE_NOT_READY 0
5450#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5451#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5452#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5453#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5454#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5455#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5456#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5473#define K_POLL_SIGNAL_INITIALIZER(obj) \
5475 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5519#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5522 .type = _event_type, \
5523 .state = K_POLL_STATE_NOT_READY, \
5524 .mode = _event_mode, \
5527 .obj = _event_obj, \
5531#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5535 .type = _event_type, \
5536 .state = K_POLL_STATE_NOT_READY, \
5537 .mode = _event_mode, \
5540 .obj = _event_obj, \
5560 int mode,
void *obj);
5636 unsigned int *signaled,
int *
result);
5722#define z_except_reason(reason) ARCH_EXCEPT(reason)
5725#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5726#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5728#define __EXCEPT_LOC()
5738#define z_except_reason(reason) do { \
5740 z_fatal_error(reason, NULL); \
5756#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5766#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5775extern void z_init_thread_base(
struct _thread_base *thread_base,
5776 int priority,
uint32_t initial_state,
5777 unsigned int options);
5779#ifdef CONFIG_MULTITHREADING
5783extern void z_init_static_threads(
void);
5788#define z_init_static_threads() do { } while (false)
5794extern bool z_is_thread_essential(
void);
5798void z_smp_thread_swap(
void);
5804extern void z_timer_expiration_handler(
struct _timeout *
t);
5814__syscall
void k_str_out(
char *
c,
size_t n);
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition: misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:44
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:46
static struct k_thread thread[2]
Definition: atomic.c:26
long atomic_t
Definition: atomic.h:22
ZTEST_BMEM int timeout
Definition: main.c:31
ZTEST_BMEM int count
Definition: main.c:33
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:131
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:198
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:176
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1707
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1672
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1688
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1722
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1648
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5689
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5708
struct _dnode sys_dnode_t
Definition: dlist.h:49
struct _dnode sys_dlist_t
Definition: dlist.h:48
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
void k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
void k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
void k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
void k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:323
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:1021
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5059
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5074
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5094
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5441
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5443
@ K_POLL_NUM_MODES
Definition: kernel.h:5445
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:335
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:121
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:220
#define EBUSY
Definition: errno.h:55
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
void k_thread_system_pool_assign(struct k_thread *thread)
Assign the system heap as a thread's resource pool.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:378
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:471
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:562
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:103
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1429
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1413
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1572
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:3906
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:3877
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:3894
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4033
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4010
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3115
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:3888
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:3988
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition: kernel.h:4088
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:3883
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:3900
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:3929
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3689
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3696
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3703
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3683
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:88
@ K_ISR
Definition: kernel.h:89
@ K_COOP_THREAD
Definition: kernel.h:90
@ K_PREEMPT_THREAD
Definition: kernel.h:91
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
static ZTEST_BMEM volatile int ret
Definition: k_float_disable.c:28
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition: kernel_structs.h:255
struct k_mem_slab ms
Definition: kobject.c:1319
struct k_mutex mutex
Definition: kobject.c:1321
struct k_thread t
Definition: kobject.c:1327
struct k_msgq msgq
Definition: test_msgq_contexts.c:12
flags
Definition: parser.h:96
state
Definition: parser_state.h:29
char c
Definition: printk.c:112
void * ptr
Definition: printk.c:120
static struct k_work work[2]
Definition: main.c:16
struct _sfnode sys_sfnode_t
Definition: sflist.h:39
struct _sflist sys_sflist_t
Definition: sflist.h:46
struct _slist sys_slist_t
Definition: slist.h:40
struct _snode sys_snode_t
Definition: slist.h:33
char stack[2048]
Definition: main.c:22
static struct k_spinlock lock
Definition: spinlock_error_case.c:13
static k_spinlock_key_t key
Definition: spinlock_error_case.c:15
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition: stdint.h:104
__INT32_TYPE__ int32_t
Definition: stdint.h:74
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__INT64_TYPE__ int64_t
Definition: stdint.h:75
Structure to store initialization entry information.
Definition: init.h:51
Definition: kernel.h:2872
_wait_q_t wait_q
Definition: kernel.h:2873
Definition: kernel.h:2111
struct k_spinlock lock
Definition: kernel.h:2114
uint32_t events
Definition: kernel.h:2113
_wait_q_t wait_q
Definition: kernel.h:2112
Definition: kernel.h:2252
futex structure
Definition: kernel.h:2032
atomic_t val
Definition: kernel.h:2033
Definition: kernel.h:5135
struct k_spinlock lock
Definition: kernel.h:5138
struct sys_heap heap
Definition: kernel.h:5136
_wait_q_t wait_q
Definition: kernel.h:5137
Definition: kernel.h:2486
Mailbox Message Structure.
Definition: kernel.h:4540
struct k_mem_block tx_block
Definition: kernel.h:4552
k_tid_t tx_target_thread
Definition: kernel.h:4556
void * tx_data
Definition: kernel.h:4548
k_tid_t rx_source_thread
Definition: kernel.h:4554
uint32_t info
Definition: kernel.h:4546
size_t size
Definition: kernel.h:4544
Mailbox Structure.
Definition: kernel.h:4568
_wait_q_t tx_msg_queue
Definition: kernel.h:4570
struct k_spinlock lock
Definition: kernel.h:4573
_wait_q_t rx_msg_queue
Definition: kernel.h:4572
Definition: mempool_heap.h:24
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4303
uint32_t used_msgs
Definition: kernel.h:4309
size_t msg_size
Definition: kernel.h:4305
uint32_t max_msgs
Definition: kernel.h:4307
Message Queue Structure.
Definition: kernel.h:4248
size_t msg_size
Definition: kernel.h:4254
char * read_ptr
Definition: kernel.h:4262
uint32_t used_msgs
Definition: kernel.h:4266
char * buffer_end
Definition: kernel.h:4260
struct k_spinlock lock
Definition: kernel.h:4252
char * write_ptr
Definition: kernel.h:4264
char * buffer_start
Definition: kernel.h:4258
uint8_t flags
Definition: kernel.h:4268
_wait_q_t wait_q
Definition: kernel.h:4250
uint32_t max_msgs
Definition: kernel.h:4256
Definition: kernel.h:2764
uint32_t lock_count
Definition: kernel.h:2771
_wait_q_t wait_q
Definition: kernel.h:2766
int owner_orig_prio
Definition: kernel.h:2774
struct k_thread * owner
Definition: kernel.h:2768
Definition: kernel.h:4695
struct k_pipe::@176 wait_q
uint8_t flags
Definition: kernel.h:4708
_wait_q_t readers
Definition: kernel.h:4704
size_t write_index
Definition: kernel.h:4700
size_t bytes_used
Definition: kernel.h:4698
struct k_spinlock lock
Definition: kernel.h:4701
_wait_q_t writers
Definition: kernel.h:4705
size_t size
Definition: kernel.h:4697
unsigned char * buffer
Definition: kernel.h:4696
size_t read_index
Definition: kernel.h:4699
Poll Event.
Definition: kernel.h:5483
struct k_poll_signal * signal
Definition: kernel.h:5508
uint32_t tag
Definition: kernel.h:5491
struct k_fifo * fifo
Definition: kernel.h:5510
struct k_msgq * msgq
Definition: kernel.h:5512
struct k_queue * queue
Definition: kernel.h:5511
uint32_t unused
Definition: kernel.h:5503
uint32_t type
Definition: kernel.h:5494
struct k_sem * sem
Definition: kernel.h:5509
uint32_t state
Definition: kernel.h:5497
uint32_t mode
Definition: kernel.h:5500
struct z_poller * poller
Definition: kernel.h:5488
void * obj
Definition: kernel.h:5507
Definition: kernel.h:5459
sys_dlist_t poll_events
Definition: kernel.h:5461
int result
Definition: kernel.h:5470
unsigned int signaled
Definition: kernel.h:5467
Kernel Spin Lock.
Definition: spinlock.h:43
struct _thread_base base
Definition: thread.h:247
struct k_heap * resource_pool
Definition: thread.h:325
struct __thread_entry entry
Definition: thread.h:271
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3735
struct _timeout timeout
Definition: kernel.h:3740
struct k_work_q * queue
Definition: kernel.h:3743
struct k_work work
Definition: kernel.h:3737
A structure used to hold work until it can be processed.
Definition: kernel.h:3854
sys_slist_t pending
Definition: kernel.h:3863
_wait_q_t drainq
Definition: kernel.h:3869
_wait_q_t notifyq
Definition: kernel.h:3866
uint32_t flags
Definition: kernel.h:3872
struct k_thread thread
Definition: kernel.h:3856
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3831
const char * name
Definition: kernel.h:3836
bool no_yield
Definition: kernel.h:3850
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3818
struct z_work_canceller canceller
Definition: kernel.h:3821
struct z_work_flusher flusher
Definition: kernel.h:3820
A structure used to submit work.
Definition: kernel.h:3707
k_work_handler_t handler
Definition: kernel.h:3716
uint32_t flags
Definition: kernel.h:3727
struct k_work_q * queue
Definition: kernel.h:3719
sys_snode_t node
Definition: kernel.h:3713
Definition: sys_heap.h:56
Definition: mem_stats.h:24
static fdata_t data[2]
Definition: test_fifo_contexts.c:15
static struct k_mbox mbox
Definition: test_mbox_api.c:28
static ZTEST_BMEM char buffer[8]
Definition: test_mbox_api.c:551
static struct k_pipe pipe
Definition: test_mutex_error.c:18
struct k_queue queue
Definition: test_queue_contexts.c:17
static int init_prio
Definition: test_sched_timeslice_and_lock.c:15
static ZTEST_BMEM struct thread_data expected
static uint64_t k_ticks_to_ms_floor64(uint64_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1103
static uint32_t k_ticks_to_ms_floor32(uint32_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1089
static struct k_timer timer[3]
Definition: timeout_order.c:13
static struct k_sem sem[3]
Definition: timeout_order.c:14
static void handler(struct k_timer *timer)
Definition: main.c:19
static const intptr_t user_data[5]
Definition: main.c:588
static struct k_work_delayable dwork
Definition: main.c:50