Zephyr Project API  3.4.0
A Scalable Open Source RTOS
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30/*
31 * Zephyr currently assumes the size of a couple standard types to simplify
32 * print string formats. Let's make sure this doesn't change without notice.
33 */
34BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
35BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
36BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
37
45#define K_ANY NULL
46
47#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
48#error Zero available thread priorities defined!
49#endif
50
51#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
52#define K_PRIO_PREEMPT(x) (x)
53
54#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
55#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
56#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
57#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
58#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
59
60#ifdef CONFIG_POLL
61#define _POLL_EVENT_OBJ_INIT(obj) \
62 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
63#define _POLL_EVENT sys_dlist_t poll_events
64#else
65#define _POLL_EVENT_OBJ_INIT(obj)
66#define _POLL_EVENT
67#endif
68
69struct k_thread;
70struct k_mutex;
71struct k_sem;
72struct k_msgq;
73struct k_mbox;
74struct k_pipe;
75struct k_queue;
76struct k_fifo;
77struct k_lifo;
78struct k_stack;
79struct k_mem_slab;
80struct k_timer;
81struct k_poll_event;
82struct k_poll_signal;
83struct k_mem_domain;
84struct k_mem_partition;
85struct k_futex;
86struct k_event;
87
89 K_ISR = 0,
92};
93
94/* private, used by k_poll and k_work_poll */
95struct k_work_poll;
96typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
97
103typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
104 void *user_data);
105
122
151 k_thread_user_cb_t user_cb, void *user_data);
152
161#endif /* !_ASMLANGUAGE */
162
163
164/*
165 * Thread user options. May be needed by assembly code. Common part uses low
166 * bits, arch-specific use high bits.
167 */
168
172#define K_ESSENTIAL (BIT(0))
173
174#if defined(CONFIG_FPU_SHARING)
184#define K_FP_IDX 1
185#define K_FP_REGS (BIT(K_FP_IDX))
186#endif
187
194#define K_USER (BIT(2))
195
204#define K_INHERIT_PERMS (BIT(3))
205
215#define K_CALLBACK_STATE (BIT(4))
216
217#ifdef CONFIG_ARC
218/* ARC processor Bitmask definitions for threads user options */
219
220#if defined(CONFIG_ARC_DSP_SHARING)
230#define K_DSP_IDX 6
231#define K_ARC_DSP_REGS (BIT(K_DSP_IDX))
232#endif
233
234#if defined(CONFIG_ARC_AGU_SHARING)
243#define K_AGU_IDX 7
244#define K_ARC_AGU_REGS (BIT(K_AGU_IDX))
245#endif
246#endif
247
248#ifdef CONFIG_X86
249/* x86 Bitmask definitions for threads user options */
250
251#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
261#define K_SSE_REGS (BIT(7))
262#endif
263#endif
264
265/* end - thread options */
266
267#if !defined(_ASMLANGUAGE)
316__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
318 size_t stack_size,
320 void *p1, void *p2, void *p3,
321 int prio, uint32_t options, k_timeout_t delay);
322
345 void *p1, void *p2,
346 void *p3);
347
361#define k_thread_access_grant(thread, ...) \
362 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
363
378static inline void k_thread_heap_assign(struct k_thread *thread,
379 struct k_heap *heap)
380{
381 thread->resource_pool = heap;
382}
383
384#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
405__syscall int k_thread_stack_space_get(const struct k_thread *thread,
406 size_t *unused_ptr);
407#endif
408
409#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
423#endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */
424
445
460
472{
473 return k_sleep(Z_TIMEOUT_MS(ms));
474}
475
492
505__syscall void k_busy_wait(uint32_t usec_to_wait);
506
518bool k_can_yield(void);
519
527__syscall void k_yield(void);
528
538__syscall void k_wakeup(k_tid_t thread);
539
547__attribute_const__
548__syscall k_tid_t z_current_get(void);
549
550#ifdef CONFIG_THREAD_LOCAL_STORAGE
551/* Thread-local cache of current thread ID, set in z_thread_entry() */
552extern __thread k_tid_t z_tls_current;
553#endif
554
561__attribute_const__
562static inline k_tid_t k_current_get(void)
563{
564#ifdef CONFIG_THREAD_LOCAL_STORAGE
565 return z_tls_current;
566#else
567 return z_current_get();
568#endif
569}
570
595
596
607
608extern k_ticks_t z_timeout_expires(const struct _timeout *timeout);
609extern k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
610
611#ifdef CONFIG_SYS_CLOCK_EXISTS
612
621
622static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
623 const struct k_thread *t)
624{
625 return z_timeout_expires(&t->base.timeout);
626}
627
636
637static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
638 const struct k_thread *t)
639{
640 return z_timeout_remaining(&t->base.timeout);
641}
642
643#endif /* CONFIG_SYS_CLOCK_EXISTS */
644
649/* timeout has timed out and is not on _timeout_q anymore */
650#define _EXPIRED (-2)
651
652struct _static_thread_data {
653 struct k_thread *init_thread;
654 k_thread_stack_t *init_stack;
655 unsigned int init_stack_size;
657 void *init_p1;
658 void *init_p2;
659 void *init_p3;
660 int init_prio;
661 uint32_t init_options;
662 int32_t init_delay;
663 const char *init_name;
664};
665
666#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
667 entry, p1, p2, p3, \
668 prio, options, delay, tname) \
669 { \
670 .init_thread = (thread), \
671 .init_stack = (stack), \
672 .init_stack_size = (stack_size), \
673 .init_entry = (k_thread_entry_t)entry, \
674 .init_p1 = (void *)p1, \
675 .init_p2 = (void *)p2, \
676 .init_p3 = (void *)p3, \
677 .init_prio = (prio), \
678 .init_options = (options), \
679 .init_delay = (delay), \
680 .init_name = STRINGIFY(tname), \
681 }
682
683/*
684 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
685 * information on arguments.
686 */
687#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
688 entry, p1, p2, p3, \
689 prio, options, delay) \
690 struct k_thread _k_thread_obj_##name; \
691 STRUCT_SECTION_ITERABLE(_static_thread_data, \
692 _k_thread_data_##name) = \
693 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
694 _k_thread_stack_##name, stack_size,\
695 entry, p1, p2, p3, prio, options, \
696 delay, name); \
697 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
698
734#define K_THREAD_DEFINE(name, stack_size, \
735 entry, p1, p2, p3, \
736 prio, options, delay) \
737 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
738 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
739 prio, options, delay)
740
771#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
772 entry, p1, p2, p3, \
773 prio, options, delay) \
774 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
775 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
776 prio, options, delay)
777
788
814__syscall void k_thread_priority_set(k_tid_t thread, int prio);
815
816
817#ifdef CONFIG_SCHED_DEADLINE
850__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
851#endif
852
853#ifdef CONFIG_SCHED_CPU_MASK
867
881
895
909
921#endif
922
939
951
978extern void k_sched_time_slice_set(int32_t slice, int prio);
979
1018void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1019 k_thread_timeslice_fn_t expired, void *data);
1020
1039extern bool k_is_in_isr(void);
1040
1057__syscall int k_is_preempt_thread(void);
1058
1070static inline bool k_is_pre_kernel(void)
1071{
1072 extern bool z_sys_post_kernel; /* in init.c */
1073
1074 return !z_sys_post_kernel;
1075}
1076
1111extern void k_sched_lock(void);
1112
1120extern void k_sched_unlock(void);
1121
1134__syscall void k_thread_custom_data_set(void *value);
1135
1143__syscall void *k_thread_custom_data_get(void);
1144
1158__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1159
1169
1181__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1182 size_t size);
1183
1196const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1197
1215#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1216
1229#define K_NSEC(t) Z_TIMEOUT_NS(t)
1230
1243#define K_USEC(t) Z_TIMEOUT_US(t)
1244
1255#define K_CYC(t) Z_TIMEOUT_CYC(t)
1256
1267#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1268
1279#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1280
1291#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1292
1303#define K_MINUTES(m) K_SECONDS((m) * 60)
1304
1315#define K_HOURS(h) K_MINUTES((h) * 60)
1316
1325#define K_FOREVER Z_FOREVER
1326
1327#ifdef CONFIG_TIMEOUT_64BIT
1328
1340#define K_TIMEOUT_ABS_TICKS(t) \
1341 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1342
1354#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1355
1368#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1369
1382#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1383
1396#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1397
1398#endif
1399
1408struct k_timer {
1409 /*
1410 * _timeout structure must be first here if we want to use
1411 * dynamic timer allocation. timeout.node is used in the double-linked
1412 * list of free timers
1413 */
1414 struct _timeout timeout;
1415
1416 /* wait queue for the (single) thread waiting on this timer */
1417 _wait_q_t wait_q;
1418
1419 /* runs in ISR context */
1420 void (*expiry_fn)(struct k_timer *timer);
1421
1422 /* runs in the context of the thread that calls k_timer_stop() */
1423 void (*stop_fn)(struct k_timer *timer);
1424
1425 /* timer period */
1426 k_timeout_t period;
1427
1428 /* timer status */
1429 uint32_t status;
1430
1431 /* user-specific data, also used to support legacy features */
1432 void *user_data;
1433
1435};
1436
1437#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1438 { \
1439 .timeout = { \
1440 .node = {},\
1441 .fn = z_timer_expiration_handler, \
1442 .dticks = 0, \
1443 }, \
1444 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1445 .expiry_fn = expiry, \
1446 .stop_fn = stop, \
1447 .status = 0, \
1448 .user_data = 0, \
1449 }
1450
1471typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1472
1487typedef void (*k_timer_stop_t)(struct k_timer *timer);
1488
1500#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1501 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1502 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1503
1513extern void k_timer_init(struct k_timer *timer,
1514 k_timer_expiry_t expiry_fn,
1515 k_timer_stop_t stop_fn);
1516
1531__syscall void k_timer_start(struct k_timer *timer,
1532 k_timeout_t duration, k_timeout_t period);
1533
1550__syscall void k_timer_stop(struct k_timer *timer);
1551
1564__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1565
1583__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1584
1585#ifdef CONFIG_SYS_CLOCK_EXISTS
1586
1597__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1598
1599static inline k_ticks_t z_impl_k_timer_expires_ticks(
1600 const struct k_timer *timer)
1601{
1602 return z_timeout_expires(&timer->timeout);
1603}
1604
1612__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1613
1614static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1615 const struct k_timer *timer)
1616{
1617 return z_timeout_remaining(&timer->timeout);
1618}
1619
1630static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1631{
1633}
1634
1635#endif /* CONFIG_SYS_CLOCK_EXISTS */
1636
1649__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1650
1654static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1655 void *user_data)
1656{
1657 timer->user_data = user_data;
1658}
1659
1667__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1668
1669static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1670{
1671 return timer->user_data;
1672}
1673
1691__syscall int64_t k_uptime_ticks(void);
1692
1706static inline int64_t k_uptime_get(void)
1707{
1709}
1710
1730static inline uint32_t k_uptime_get_32(void)
1731{
1732 return (uint32_t)k_uptime_get();
1733}
1734
1746static inline int64_t k_uptime_delta(int64_t *reftime)
1747{
1748 int64_t uptime, delta;
1749
1750 uptime = k_uptime_get();
1751 delta = uptime - *reftime;
1752 *reftime = uptime;
1753
1754 return delta;
1755}
1756
1765static inline uint32_t k_cycle_get_32(void)
1766{
1767 return arch_k_cycle_get_32();
1768}
1769
1780static inline uint64_t k_cycle_get_64(void)
1781{
1782 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1783 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1784 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1785 return 0;
1786 }
1787
1788 return arch_k_cycle_get_64();
1789}
1790
1799struct k_queue {
1800 sys_sflist_t data_q;
1801 struct k_spinlock lock;
1802 _wait_q_t wait_q;
1803
1804 _POLL_EVENT;
1805
1807};
1808
1809#define Z_QUEUE_INITIALIZER(obj) \
1810 { \
1811 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1812 .lock = { }, \
1813 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1814 _POLL_EVENT_OBJ_INIT(obj) \
1815 }
1816
1817extern void *z_queue_node_peek(sys_sfnode_t *node, bool needs_free);
1818
1836__syscall void k_queue_init(struct k_queue *queue);
1837
1851__syscall void k_queue_cancel_wait(struct k_queue *queue);
1852
1865extern void k_queue_append(struct k_queue *queue, void *data);
1866
1883__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1884
1897extern void k_queue_prepend(struct k_queue *queue, void *data);
1898
1915__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1916
1930extern void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1931
1950extern int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
1951
1967extern int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
1968
1987__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
1988
2005bool k_queue_remove(struct k_queue *queue, void *data);
2006
2021bool k_queue_unique_append(struct k_queue *queue, void *data);
2022
2036__syscall int k_queue_is_empty(struct k_queue *queue);
2037
2038static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2039{
2040 return (int)sys_sflist_is_empty(&queue->data_q);
2041}
2042
2052__syscall void *k_queue_peek_head(struct k_queue *queue);
2053
2063__syscall void *k_queue_peek_tail(struct k_queue *queue);
2064
2074#define K_QUEUE_DEFINE(name) \
2075 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2076 Z_QUEUE_INITIALIZER(name)
2077
2080#ifdef CONFIG_USERSPACE
2090struct k_futex {
2092};
2093
2101struct z_futex_data {
2102 _wait_q_t wait_q;
2103 struct k_spinlock lock;
2104};
2105
2106#define Z_FUTEX_DATA_INITIALIZER(obj) \
2107 { \
2108 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2109 }
2110
2136__syscall int k_futex_wait(struct k_futex *futex, int expected,
2138
2153__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2154
2156#endif
2157
2169struct k_event {
2170 _wait_q_t wait_q;
2173
2175};
2176
2177#define Z_EVENT_INITIALIZER(obj) \
2178 { \
2179 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2180 .events = 0 \
2181 }
2182
2190__syscall void k_event_init(struct k_event *event);
2191
2205__syscall void k_event_post(struct k_event *event, uint32_t events);
2206
2220__syscall void k_event_set(struct k_event *event, uint32_t events);
2221
2234__syscall void k_event_set_masked(struct k_event *event, uint32_t events,
2235 uint32_t events_mask);
2236
2245__syscall void k_event_clear(struct k_event *event, uint32_t events);
2246
2268__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2269 bool reset, k_timeout_t timeout);
2270
2292__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2293 bool reset, k_timeout_t timeout);
2294
2304#define K_EVENT_DEFINE(name) \
2305 STRUCT_SECTION_ITERABLE(k_event, name) = \
2306 Z_EVENT_INITIALIZER(name);
2307
2310struct k_fifo {
2311 struct k_queue _queue;
2312};
2313
2317#define Z_FIFO_INITIALIZER(obj) \
2318 { \
2319 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2320 }
2321
2339#define k_fifo_init(fifo) \
2340 ({ \
2341 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2342 k_queue_init(&(fifo)->_queue); \
2343 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2344 })
2345
2357#define k_fifo_cancel_wait(fifo) \
2358 ({ \
2359 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2360 k_queue_cancel_wait(&(fifo)->_queue); \
2361 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2362 })
2363
2376#define k_fifo_put(fifo, data) \
2377 ({ \
2378 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2379 k_queue_append(&(fifo)->_queue, data); \
2380 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2381 })
2382
2399#define k_fifo_alloc_put(fifo, data) \
2400 ({ \
2401 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2402 int ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2403 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, ret); \
2404 ret; \
2405 })
2406
2421#define k_fifo_put_list(fifo, head, tail) \
2422 ({ \
2423 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2424 k_queue_append_list(&(fifo)->_queue, head, tail); \
2425 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2426 })
2427
2441#define k_fifo_put_slist(fifo, list) \
2442 ({ \
2443 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2444 k_queue_merge_slist(&(fifo)->_queue, list); \
2445 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2446 })
2447
2465#define k_fifo_get(fifo, timeout) \
2466 ({ \
2467 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2468 void *ret = k_queue_get(&(fifo)->_queue, timeout); \
2469 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, ret); \
2470 ret; \
2471 })
2472
2486#define k_fifo_is_empty(fifo) \
2487 k_queue_is_empty(&(fifo)->_queue)
2488
2502#define k_fifo_peek_head(fifo) \
2503 ({ \
2504 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2505 void *ret = k_queue_peek_head(&(fifo)->_queue); \
2506 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, ret); \
2507 ret; \
2508 })
2509
2521#define k_fifo_peek_tail(fifo) \
2522 ({ \
2523 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2524 void *ret = k_queue_peek_tail(&(fifo)->_queue); \
2525 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, ret); \
2526 ret; \
2527 })
2528
2538#define K_FIFO_DEFINE(name) \
2539 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_fifo, name) = \
2540 Z_FIFO_INITIALIZER(name)
2541
2544struct k_lifo {
2545 struct k_queue _queue;
2546};
2547
2552#define Z_LIFO_INITIALIZER(obj) \
2553 { \
2554 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2555 }
2556
2574#define k_lifo_init(lifo) \
2575 ({ \
2576 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2577 k_queue_init(&(lifo)->_queue); \
2578 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2579 })
2580
2593#define k_lifo_put(lifo, data) \
2594 ({ \
2595 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2596 k_queue_prepend(&(lifo)->_queue, data); \
2597 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2598 })
2599
2616#define k_lifo_alloc_put(lifo, data) \
2617 ({ \
2618 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2619 int ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2620 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, ret); \
2621 ret; \
2622 })
2623
2641#define k_lifo_get(lifo, timeout) \
2642 ({ \
2643 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2644 void *ret = k_queue_get(&(lifo)->_queue, timeout); \
2645 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, ret); \
2646 ret; \
2647 })
2648
2658#define K_LIFO_DEFINE(name) \
2659 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_lifo, name) = \
2660 Z_LIFO_INITIALIZER(name)
2661
2667#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2668
2669typedef uintptr_t stack_data_t;
2670
2671struct k_stack {
2672 _wait_q_t wait_q;
2673 struct k_spinlock lock;
2674 stack_data_t *base, *next, *top;
2675
2676 uint8_t flags;
2677
2679};
2680
2681#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2682 { \
2683 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2684 .base = stack_buffer, \
2685 .next = stack_buffer, \
2686 .top = stack_buffer + stack_num_entries, \
2687 }
2688
2708void k_stack_init(struct k_stack *stack,
2709 stack_data_t *buffer, uint32_t num_entries);
2710
2711
2726__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2727 uint32_t num_entries);
2728
2740int k_stack_cleanup(struct k_stack *stack);
2741
2755__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2756
2777__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2779
2790#define K_STACK_DEFINE(name, stack_num_entries) \
2791 stack_data_t __noinit \
2792 _k_stack_buf_##name[stack_num_entries]; \
2793 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2794 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2795 stack_num_entries)
2796
2803struct k_work;
2804struct k_work_q;
2805struct k_work_queue_config;
2806extern struct k_work_q k_sys_work_q;
2807
2822struct k_mutex {
2824 _wait_q_t wait_q;
2827
2830
2833
2835};
2836
2840#define Z_MUTEX_INITIALIZER(obj) \
2841 { \
2842 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2843 .owner = NULL, \
2844 .lock_count = 0, \
2845 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2846 }
2847
2861#define K_MUTEX_DEFINE(name) \
2862 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2863 Z_MUTEX_INITIALIZER(name)
2864
2877__syscall int k_mutex_init(struct k_mutex *mutex);
2878
2879
2902
2923__syscall int k_mutex_unlock(struct k_mutex *mutex);
2924
2931 _wait_q_t wait_q;
2932};
2933
2934#define Z_CONDVAR_INITIALIZER(obj) \
2935 { \
2936 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2937 }
2938
2951__syscall int k_condvar_init(struct k_condvar *condvar);
2952
2959__syscall int k_condvar_signal(struct k_condvar *condvar);
2960
2968__syscall int k_condvar_broadcast(struct k_condvar *condvar);
2969
2987__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
2989
3000#define K_CONDVAR_DEFINE(name) \
3001 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3002 Z_CONDVAR_INITIALIZER(name)
3011struct k_sem {
3012 _wait_q_t wait_q;
3013 unsigned int count;
3014 unsigned int limit;
3015
3016 _POLL_EVENT;
3017
3019
3020};
3021
3022#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3023 { \
3024 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3025 .count = initial_count, \
3026 .limit = count_limit, \
3027 _POLL_EVENT_OBJ_INIT(obj) \
3028 }
3029
3048#define K_SEM_MAX_LIMIT UINT_MAX
3049
3065__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3066 unsigned int limit);
3067
3086__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3087
3098__syscall void k_sem_give(struct k_sem *sem);
3099
3109__syscall void k_sem_reset(struct k_sem *sem);
3110
3120__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3121
3125static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3126{
3127 return sem->count;
3128}
3129
3141#define K_SEM_DEFINE(name, initial_count, count_limit) \
3142 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3143 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3144 BUILD_ASSERT(((count_limit) != 0) && \
3145 ((initial_count) <= (count_limit)) && \
3146 ((count_limit) <= K_SEM_MAX_LIMIT));
3147
3154struct k_work_delayable;
3155struct k_work_sync;
3156
3173typedef void (*k_work_handler_t)(struct k_work *work);
3174
3190
3205int k_work_busy_get(const struct k_work *work);
3206
3220static inline bool k_work_is_pending(const struct k_work *work);
3221
3243 struct k_work *work);
3244
3253extern int k_work_submit(struct k_work *work);
3254
3280 struct k_work_sync *sync);
3281
3302
3333bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3334
3345
3366 k_thread_stack_t *stack, size_t stack_size,
3367 int prio, const struct k_work_queue_config *cfg);
3368
3378static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3379
3403int k_work_queue_drain(struct k_work_q *queue, bool plug);
3404
3419
3435
3447static inline struct k_work_delayable *
3449
3464
3479static inline bool k_work_delayable_is_pending(
3480 const struct k_work_delayable *dwork);
3481
3496 const struct k_work_delayable *dwork);
3497
3512 const struct k_work_delayable *dwork);
3513
3540 struct k_work_delayable *dwork,
3541 k_timeout_t delay);
3542
3557 k_timeout_t delay);
3558
3595 struct k_work_delayable *dwork,
3596 k_timeout_t delay);
3597
3611 k_timeout_t delay);
3612
3638 struct k_work_sync *sync);
3639
3661
3691 struct k_work_sync *sync);
3692
3693enum {
3698 /* The atomic API is used for all work and queue flags fields to
3699 * enforce sequential consistency in SMP environments.
3700 */
3701
3702 /* Bits that represent the work item states. At least nine of the
3703 * combinations are distinct valid stable states.
3704 */
3705 K_WORK_RUNNING_BIT = 0,
3706 K_WORK_CANCELING_BIT = 1,
3707 K_WORK_QUEUED_BIT = 2,
3708 K_WORK_DELAYED_BIT = 3,
3709
3710 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3711 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT),
3712
3713 /* Static work flags */
3714 K_WORK_DELAYABLE_BIT = 8,
3715 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3716
3717 /* Dynamic work queue flags */
3718 K_WORK_QUEUE_STARTED_BIT = 0,
3719 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3720 K_WORK_QUEUE_BUSY_BIT = 1,
3721 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3722 K_WORK_QUEUE_DRAIN_BIT = 2,
3723 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3724 K_WORK_QUEUE_PLUGGED_BIT = 3,
3725 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3726
3727 /* Static work queue flags */
3728 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3729 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3730
3734 /* Transient work flags */
3735
3741 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3742
3747 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3748
3754 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3755
3761 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3762};
3763
3765struct k_work {
3766 /* All fields are protected by the work module spinlock. No fields
3767 * are to be accessed except through kernel API.
3768 */
3769
3770 /* Node to link into k_work_q pending list. */
3772
3773 /* The function to be invoked by the work queue thread. */
3775
3776 /* The queue on which the work item was last submitted. */
3778
3779 /* State of the work item.
3780 *
3781 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3782 *
3783 * It can be RUNNING and CANCELING simultaneously.
3784 */
3786};
3787
3788#define Z_WORK_INITIALIZER(work_handler) { \
3789 .handler = work_handler, \
3790}
3791
3794 /* The work item. */
3795 struct k_work work;
3796
3797 /* Timeout used to submit work after a delay. */
3798 struct _timeout timeout;
3799
3800 /* The queue to which the work should be submitted. */
3802};
3803
3804#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3805 .work = { \
3806 .handler = work_handler, \
3807 .flags = K_WORK_DELAYABLE, \
3808 }, \
3809}
3810
3827#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3828 struct k_work_delayable work \
3829 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3830
3835/* Record used to wait for work to flush.
3836 *
3837 * The work item is inserted into the queue that will process (or is
3838 * processing) the item, and will be processed as soon as the item
3839 * completes. When the flusher is processed the semaphore will be
3840 * signaled, releasing the thread waiting for the flush.
3841 */
3842struct z_work_flusher {
3843 struct k_work work;
3844 struct k_sem sem;
3845};
3846
3847/* Record used to wait for work to complete a cancellation.
3848 *
3849 * The work item is inserted into a global queue of pending cancels.
3850 * When a cancelling work item goes idle any matching waiters are
3851 * removed from pending_cancels and are woken.
3852 */
3853struct z_work_canceller {
3854 sys_snode_t node;
3855 struct k_work *work;
3856 struct k_sem sem;
3857};
3858
3877 union {
3878 struct z_work_flusher flusher;
3879 struct z_work_canceller canceller;
3880 };
3881};
3882
3894 const char *name;
3895
3909};
3910
3912struct k_work_q {
3913 /* The thread that animates the work. */
3915
3916 /* All the following fields must be accessed only while the
3917 * work module spinlock is held.
3918 */
3919
3920 /* List of k_work items to be worked. */
3922
3923 /* Wait queue for idle work thread. */
3924 _wait_q_t notifyq;
3925
3926 /* Wait queue for threads waiting for the queue to drain. */
3927 _wait_q_t drainq;
3928
3929 /* Flags describing queue state. */
3931};
3932
3933/* Provide the implementation for inline functions declared above */
3934
3935static inline bool k_work_is_pending(const struct k_work *work)
3936{
3937 return k_work_busy_get(work) != 0;
3938}
3939
3940static inline struct k_work_delayable *
3942{
3943 return CONTAINER_OF(work, struct k_work_delayable, work);
3944}
3945
3947 const struct k_work_delayable *dwork)
3948{
3949 return k_work_delayable_busy_get(dwork) != 0;
3950}
3951
3953 const struct k_work_delayable *dwork)
3954{
3955 return z_timeout_expires(&dwork->timeout);
3956}
3957
3959 const struct k_work_delayable *dwork)
3960{
3961 return z_timeout_remaining(&dwork->timeout);
3962}
3963
3965{
3966 return &queue->thread;
3967}
3968
3971struct k_work_user;
3972
3987typedef void (*k_work_user_handler_t)(struct k_work_user *work);
3988
3993struct k_work_user_q {
3994 struct k_queue queue;
3995 struct k_thread thread;
3996};
3997
3998enum {
3999 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4000};
4001
4002struct k_work_user {
4003 void *_reserved; /* Used by k_queue implementation. */
4006};
4007
4012#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4013#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4014#else
4015#define Z_WORK_USER_INITIALIZER(work_handler) \
4016 { \
4017 ._reserved = NULL, \
4018 .handler = work_handler, \
4019 .flags = 0 \
4020 }
4021#endif
4022
4034#define K_WORK_USER_DEFINE(work, work_handler) \
4035 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4036
4046static inline void k_work_user_init(struct k_work_user *work,
4048{
4049 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4050}
4051
4068static inline bool k_work_user_is_pending(struct k_work_user *work)
4069{
4070 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4071}
4072
4091static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4092 struct k_work_user *work)
4093{
4094 int ret = -EBUSY;
4095
4097 K_WORK_USER_STATE_PENDING)) {
4098 ret = k_queue_alloc_append(&work_q->queue, work);
4099
4100 /* Couldn't insert into the queue. Clear the pending bit
4101 * so the work item can be submitted again
4102 */
4103 if (ret != 0) {
4105 K_WORK_USER_STATE_PENDING);
4106 }
4107 }
4108
4109 return ret;
4110}
4111
4131extern void k_work_user_queue_start(struct k_work_user_q *work_q,
4133 size_t stack_size, int prio,
4134 const char *name);
4135
4146static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4147{
4148 return &work_q->thread;
4149}
4150
4157struct k_work_poll {
4158 struct k_work work;
4159 struct k_work_q *workq;
4160 struct z_poller poller;
4161 struct k_poll_event *events;
4162 int num_events;
4163 k_work_handler_t real_handler;
4164 struct _timeout timeout;
4165 int poll_result;
4166};
4167
4188#define K_WORK_DEFINE(work, work_handler) \
4189 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4190
4200extern void k_work_poll_init(struct k_work_poll *work,
4202
4237extern int k_work_poll_submit_to_queue(struct k_work_q *work_q,
4238 struct k_work_poll *work,
4239 struct k_poll_event *events,
4240 int num_events,
4242
4274extern int k_work_poll_submit(struct k_work_poll *work,
4275 struct k_poll_event *events,
4276 int num_events,
4278
4293extern int k_work_poll_cancel(struct k_work_poll *work);
4294
4306struct k_msgq {
4308 _wait_q_t wait_q;
4312 size_t msg_size;
4325
4326 _POLL_EVENT;
4327
4330
4332};
4338#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4339 { \
4340 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4341 .msg_size = q_msg_size, \
4342 .max_msgs = q_max_msgs, \
4343 .buffer_start = q_buffer, \
4344 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4345 .read_ptr = q_buffer, \
4346 .write_ptr = q_buffer, \
4347 .used_msgs = 0, \
4348 _POLL_EVENT_OBJ_INIT(obj) \
4349 }
4350
4356#define K_MSGQ_FLAG_ALLOC BIT(0)
4357
4363 size_t msg_size;
4368};
4369
4370
4391#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4392 static char __noinit __aligned(q_align) \
4393 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4394 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4395 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4396 (q_msg_size), (q_max_msgs))
4397
4414void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4415 uint32_t max_msgs);
4416
4436__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4437 uint32_t max_msgs);
4438
4450
4472__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4473
4494__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4495
4510__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4511
4528__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4529
4539__syscall void k_msgq_purge(struct k_msgq *msgq);
4540
4552
4561__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4562 struct k_msgq_attrs *attrs);
4563
4564
4565static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4566{
4567 return msgq->max_msgs - msgq->used_msgs;
4568}
4569
4580
4581static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4582{
4583 return msgq->used_msgs;
4584}
4585
4600 uint32_t _mailbox;
4602 size_t size;
4606 void *tx_data;
4608 void *_rx_data;
4616 k_tid_t _syncing_thread;
4617#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4619 struct k_sem *_async_sem;
4620#endif
4621};
4626struct k_mbox {
4628 _wait_q_t tx_msg_queue;
4630 _wait_q_t rx_msg_queue;
4632
4634};
4639#define Z_MBOX_INITIALIZER(obj) \
4640 { \
4641 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4642 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4643 }
4644
4658#define K_MBOX_DEFINE(name) \
4659 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4660 Z_MBOX_INITIALIZER(name) \
4661
4669extern void k_mbox_init(struct k_mbox *mbox);
4670
4690extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4692
4706extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4707 struct k_sem *sem);
4708
4726extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4727 void *buffer, k_timeout_t timeout);
4728
4742extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4743
4753struct k_pipe {
4754 unsigned char *buffer;
4755 size_t size;
4756 size_t bytes_used;
4757 size_t read_index;
4761 struct {
4762 _wait_q_t readers;
4763 _wait_q_t writers;
4766 _POLL_EVENT;
4767
4771};
4772
4776#define K_PIPE_FLAG_ALLOC BIT(0)
4778#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4779 { \
4780 .buffer = pipe_buffer, \
4781 .size = pipe_buffer_size, \
4782 .bytes_used = 0, \
4783 .read_index = 0, \
4784 .write_index = 0, \
4785 .lock = {}, \
4786 .wait_q = { \
4787 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4788 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4789 }, \
4790 _POLL_EVENT_OBJ_INIT(obj) \
4791 .flags = 0, \
4792 }
4793
4811#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4812 static unsigned char __noinit __aligned(pipe_align) \
4813 _k_pipe_buf_##name[pipe_buffer_size]; \
4814 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4815 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4816
4828void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4829
4842
4858__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4859
4878__syscall int k_pipe_put(struct k_pipe *pipe, void *data,
4879 size_t bytes_to_write, size_t *bytes_written,
4880 size_t min_xfer, k_timeout_t timeout);
4881
4901__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
4902 size_t bytes_to_read, size_t *bytes_read,
4903 size_t min_xfer, k_timeout_t timeout);
4904
4913__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
4914
4923__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
4924
4935__syscall void k_pipe_flush(struct k_pipe *pipe);
4936
4948__syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
4949
4956struct k_mem_slab {
4957 _wait_q_t wait_q;
4958 struct k_spinlock lock;
4959 uint32_t num_blocks;
4960 size_t block_size;
4961 char *buffer;
4962 char *free_list;
4963 uint32_t num_used;
4964#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
4965 uint32_t max_used;
4966#endif
4967
4969};
4970
4971#define Z_MEM_SLAB_INITIALIZER(obj, slab_buffer, slab_block_size, \
4972 slab_num_blocks) \
4973 { \
4974 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4975 .lock = {}, \
4976 .num_blocks = slab_num_blocks, \
4977 .block_size = slab_block_size, \
4978 .buffer = slab_buffer, \
4979 .free_list = NULL, \
4980 .num_used = 0, \
4981 }
4982
4983
5017#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5018 char __noinit_named(k_mem_slab_buf_##name) \
5019 __aligned(WB_UP(slab_align)) \
5020 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5021 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5022 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5023 WB_UP(slab_block_size), slab_num_blocks)
5024
5039#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5040 static char __noinit_named(k_mem_slab_buf_##name) \
5041 __aligned(WB_UP(slab_align)) \
5042 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5043 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5044 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5045 WB_UP(slab_block_size), slab_num_blocks)
5046
5068extern int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5069 size_t block_size, uint32_t num_blocks);
5070
5093extern int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5095
5105extern void k_mem_slab_free(struct k_mem_slab *slab, void **mem);
5106
5117static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5118{
5119 return slab->num_used;
5120}
5121
5132static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5133{
5134#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5135 return slab->max_used;
5136#else
5137 ARG_UNUSED(slab);
5138 return 0;
5139#endif
5140}
5141
5152static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5153{
5154 return slab->num_blocks - slab->num_used;
5155}
5156
5169int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5170
5182int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5183
5191/* kernel synchronized heap struct */
5192
5193struct k_heap {
5195 _wait_q_t wait_q;
5197};
5198
5212void k_heap_init(struct k_heap *h, void *mem, size_t bytes);
5213
5233void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5235
5257void *k_heap_alloc(struct k_heap *h, size_t bytes,
5259
5270void k_heap_free(struct k_heap *h, void *mem);
5271
5272/* Hand-calculated minimum heap sizes needed to return a successful
5273 * 1-byte allocation. See details in lib/os/heap.[ch]
5274 */
5275#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5276
5293#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5294 char in_section \
5295 __aligned(8) /* CHUNK_UNIT */ \
5296 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5297 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5298 .heap = { \
5299 .init_mem = kheap_##name, \
5300 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5301 }, \
5302 }
5303
5318#define K_HEAP_DEFINE(name, bytes) \
5319 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5320 __noinit_named(kheap_buf_##name))
5321
5336#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5337 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5338
5367extern void *k_aligned_alloc(size_t align, size_t size);
5368
5380extern void *k_malloc(size_t size);
5381
5392extern void k_free(void *ptr);
5393
5405extern void *k_calloc(size_t nmemb, size_t size);
5406
5409/* polling API - PRIVATE */
5410
5411#ifdef CONFIG_POLL
5412#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5413#else
5414#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5415#endif
5416
5417/* private - types bit positions */
5418enum _poll_types_bits {
5419 /* can be used to ignore an event */
5420 _POLL_TYPE_IGNORE,
5421
5422 /* to be signaled by k_poll_signal_raise() */
5423 _POLL_TYPE_SIGNAL,
5424
5425 /* semaphore availability */
5426 _POLL_TYPE_SEM_AVAILABLE,
5427
5428 /* queue/FIFO/LIFO data availability */
5429 _POLL_TYPE_DATA_AVAILABLE,
5430
5431 /* msgq data availability */
5432 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5433
5434 /* pipe data availability */
5435 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5436
5437 _POLL_NUM_TYPES
5438};
5439
5440#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5441
5442/* private - states bit positions */
5443enum _poll_states_bits {
5444 /* default state when creating event */
5445 _POLL_STATE_NOT_READY,
5446
5447 /* signaled by k_poll_signal_raise() */
5448 _POLL_STATE_SIGNALED,
5449
5450 /* semaphore is available */
5451 _POLL_STATE_SEM_AVAILABLE,
5452
5453 /* data is available to read on queue/FIFO/LIFO */
5454 _POLL_STATE_DATA_AVAILABLE,
5455
5456 /* queue/FIFO/LIFO wait was cancelled */
5457 _POLL_STATE_CANCELLED,
5458
5459 /* data is available to read on a message queue */
5460 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5461
5462 /* data is available to read from a pipe */
5463 _POLL_STATE_PIPE_DATA_AVAILABLE,
5464
5465 _POLL_NUM_STATES
5466};
5467
5468#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5469
5470#define _POLL_EVENT_NUM_UNUSED_BITS \
5471 (32 - (0 \
5472 + 8 /* tag */ \
5473 + _POLL_NUM_TYPES \
5474 + _POLL_NUM_STATES \
5475 + 1 /* modes */ \
5476 ))
5477
5478/* end of polling API - PRIVATE */
5479
5480
5487/* Public polling API */
5488
5489/* public - values for k_poll_event.type bitfield */
5490#define K_POLL_TYPE_IGNORE 0
5491#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5492#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5493#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5494#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5495#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5496#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5497
5498/* public - polling modes */
5500 /* polling thread does not take ownership of objects when available */
5502
5505
5506/* public - values for k_poll_event.state bitfield */
5507#define K_POLL_STATE_NOT_READY 0
5508#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5509#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5510#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5511#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5512#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5513#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5514#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5515
5516/* public - poll signal object */
5520
5525 unsigned int signaled;
5526
5529};
5530
5531#define K_POLL_SIGNAL_INITIALIZER(obj) \
5532 { \
5533 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5534 .signaled = 0, \
5535 .result = 0, \
5536 }
5543 sys_dnode_t _node;
5544
5546 struct z_poller *poller;
5547
5550
5552 uint32_t type:_POLL_NUM_TYPES;
5553
5555 uint32_t state:_POLL_NUM_STATES;
5556
5559
5561 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5562
5564 union {
5565 void *obj;
5567 struct k_sem *sem;
5568 struct k_fifo *fifo;
5569 struct k_queue *queue;
5570 struct k_msgq *msgq;
5571#ifdef CONFIG_PIPES
5572 struct k_pipe *pipe;
5573#endif
5574 };
5575};
5576
5577#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5578 { \
5579 .poller = NULL, \
5580 .type = _event_type, \
5581 .state = K_POLL_STATE_NOT_READY, \
5582 .mode = _event_mode, \
5583 .unused = 0, \
5584 { \
5585 .obj = _event_obj, \
5586 }, \
5587 }
5588
5589#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5590 event_tag) \
5591 { \
5592 .tag = event_tag, \
5593 .type = _event_type, \
5594 .state = K_POLL_STATE_NOT_READY, \
5595 .mode = _event_mode, \
5596 .unused = 0, \
5597 { \
5598 .obj = _event_obj, \
5599 }, \
5600 }
5601
5617extern void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5618 int mode, void *obj);
5619
5663__syscall int k_poll(struct k_poll_event *events, int num_events,
5665
5674__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5675
5676/*
5677 * @brief Reset a poll signal object's state to unsignaled.
5678 *
5679 * @param sig A poll signal object
5680 */
5681__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5682
5693__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5694 unsigned int *signaled, int *result);
5695
5720__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5721
5725extern void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state);
5726
5747static inline void k_cpu_idle(void)
5748{
5749 arch_cpu_idle();
5750}
5751
5766static inline void k_cpu_atomic_idle(unsigned int key)
5767{
5769}
5770
5778#ifdef ARCH_EXCEPT
5779/* This architecture has direct support for triggering a CPU exception */
5780#define z_except_reason(reason) ARCH_EXCEPT(reason)
5781#else
5782
5783#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5784#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5785#else
5786#define __EXCEPT_LOC()
5787#endif
5788
5789/* NOTE: This is the implementation for arches that do not implement
5790 * ARCH_EXCEPT() to generate a real CPU exception.
5791 *
5792 * We won't have a real exception frame to determine the PC value when
5793 * the oops occurred, so print file and line number before we jump into
5794 * the fatal error handler.
5795 */
5796#define z_except_reason(reason) do { \
5797 __EXCEPT_LOC(); \
5798 z_fatal_error(reason, NULL); \
5799 } while (false)
5800
5801#endif /* _ARCH__EXCEPT */
5802
5814#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5815
5824#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5825
5826/*
5827 * private APIs that are utilized by one or more public APIs
5828 */
5829
5833extern void z_init_thread_base(struct _thread_base *thread_base,
5834 int priority, uint32_t initial_state,
5835 unsigned int options);
5836
5837#ifdef CONFIG_MULTITHREADING
5841extern void z_init_static_threads(void);
5842#else
5846#define z_init_static_threads() do { } while (false)
5847#endif
5848
5852extern bool z_is_thread_essential(void);
5853
5854#ifdef CONFIG_SMP
5855void z_smp_thread_init(void *arg, struct k_thread *thread);
5856void z_smp_thread_swap(void);
5857#endif
5858
5862extern void z_timer_expiration_handler(struct _timeout *t);
5863
5864#ifdef CONFIG_PRINTK
5872__syscall void k_str_out(char *c, size_t n);
5873#endif
5874
5895__syscall int k_float_disable(struct k_thread *thread);
5896
5935__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
5936
5946
5954
5965
5976
5985
5994
5995#ifdef __cplusplus
5996}
5997#endif
5998
5999#include <zephyr/tracing/tracing.h>
6000#include <syscalls/kernel.h>
6001
6002#endif /* !_ASMLANGUAGE */
6003
6004#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition: misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:44
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:46
static struct k_thread thread[2]
Definition: atomic.c:26
long atomic_t
Definition: atomic.h:22
ZTEST_BMEM int timeout
Definition: main.c:31
ZTEST_BMEM int count
Definition: main.c:33
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:131
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:198
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:176
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1765
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1730
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1746
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1780
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1706
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5747
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5766
struct _dnode sys_dnode_t
Definition: dlist.h:49
struct _dnode sys_dlist_t
Definition: dlist.h:48
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
void k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
void k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
void k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
void k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:323
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:1070
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5117
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5132
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5152
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5499
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5501
@ K_POLL_NUM_MODES
Definition: kernel.h:5503
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:335
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:124
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:224
#define EBUSY
Definition: errno.h:55
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
void k_thread_system_pool_assign(struct k_thread *thread)
Assign the system heap as a thread's resource pool.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:378
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:471
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:562
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:103
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1487
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1471
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1630
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:3964
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:3935
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:3952
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4091
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4068
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3173
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:3946
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:4046
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition: kernel.h:4146
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:3941
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:3958
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:3987
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3747
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3754
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3761
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3741
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:88
@ K_ISR
Definition: kernel.h:89
@ K_COOP_THREAD
Definition: kernel.h:90
@ K_PREEMPT_THREAD
Definition: kernel.h:91
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
static ZTEST_BMEM volatile int ret
Definition: k_float_disable.c:29
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition: kernel_structs.h:252
struct k_mem_slab ms
Definition: kobject.c:1319
struct k_mutex mutex
Definition: kobject.c:1321
struct k_thread t
Definition: kobject.c:1327
Memory Statistics.
struct k_msgq msgq
Definition: test_msgq_contexts.c:12
flags
Definition: parser.h:96
state
Definition: parser_state.h:29
char c
Definition: printk.c:112
void * ptr
Definition: printk.c:120
static struct k_work work[2]
Definition: main.c:16
struct _sfnode sys_sfnode_t
Definition: sflist.h:39
struct _sflist sys_sflist_t
Definition: sflist.h:46
struct _slist sys_slist_t
Definition: slist.h:40
struct _snode sys_snode_t
Definition: slist.h:33
char stack[2048]
Definition: main.c:22
static struct k_spinlock lock
Definition: spinlock_error_case.c:13
static k_spinlock_key_t key
Definition: spinlock_error_case.c:15
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition: stdint.h:104
__INT32_TYPE__ int32_t
Definition: stdint.h:74
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__INT64_TYPE__ int64_t
Definition: stdint.h:75
Structure to store initialization entry information.
Definition: init.h:92
Definition: kernel.h:2930
_wait_q_t wait_q
Definition: kernel.h:2931
Definition: kernel.h:2169
struct k_spinlock lock
Definition: kernel.h:2172
uint32_t events
Definition: kernel.h:2171
_wait_q_t wait_q
Definition: kernel.h:2170
Definition: kernel.h:2310
futex structure
Definition: kernel.h:2090
atomic_t val
Definition: kernel.h:2091
Definition: kernel.h:5193
struct k_spinlock lock
Definition: kernel.h:5196
struct sys_heap heap
Definition: kernel.h:5194
_wait_q_t wait_q
Definition: kernel.h:5195
Definition: kernel.h:2544
Mailbox Message Structure.
Definition: kernel.h:4598
struct k_mem_block tx_block
Definition: kernel.h:4610
k_tid_t tx_target_thread
Definition: kernel.h:4614
void * tx_data
Definition: kernel.h:4606
k_tid_t rx_source_thread
Definition: kernel.h:4612
uint32_t info
Definition: kernel.h:4604
size_t size
Definition: kernel.h:4602
Mailbox Structure.
Definition: kernel.h:4626
_wait_q_t tx_msg_queue
Definition: kernel.h:4628
struct k_spinlock lock
Definition: kernel.h:4631
_wait_q_t rx_msg_queue
Definition: kernel.h:4630
Definition: mempool_heap.h:24
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4361
uint32_t used_msgs
Definition: kernel.h:4367
size_t msg_size
Definition: kernel.h:4363
uint32_t max_msgs
Definition: kernel.h:4365
Message Queue Structure.
Definition: kernel.h:4306
size_t msg_size
Definition: kernel.h:4312
char * read_ptr
Definition: kernel.h:4320
uint32_t used_msgs
Definition: kernel.h:4324
char * buffer_end
Definition: kernel.h:4318
struct k_spinlock lock
Definition: kernel.h:4310
char * write_ptr
Definition: kernel.h:4322
char * buffer_start
Definition: kernel.h:4316
uint8_t flags
Definition: kernel.h:4326
_wait_q_t wait_q
Definition: kernel.h:4308
uint32_t max_msgs
Definition: kernel.h:4314
Definition: kernel.h:2822
uint32_t lock_count
Definition: kernel.h:2829
_wait_q_t wait_q
Definition: kernel.h:2824
int owner_orig_prio
Definition: kernel.h:2832
struct k_thread * owner
Definition: kernel.h:2826
Definition: kernel.h:4753
uint8_t flags
Definition: kernel.h:4766
_wait_q_t readers
Definition: kernel.h:4762
size_t write_index
Definition: kernel.h:4758
size_t bytes_used
Definition: kernel.h:4756
struct k_spinlock lock
Definition: kernel.h:4759
_wait_q_t writers
Definition: kernel.h:4763
struct k_pipe::@217 wait_q
size_t size
Definition: kernel.h:4755
unsigned char * buffer
Definition: kernel.h:4754
size_t read_index
Definition: kernel.h:4757
Poll Event.
Definition: kernel.h:5541
struct k_poll_signal * signal
Definition: kernel.h:5566
uint32_t tag
Definition: kernel.h:5549
struct k_fifo * fifo
Definition: kernel.h:5568
struct k_msgq * msgq
Definition: kernel.h:5570
struct k_queue * queue
Definition: kernel.h:5569
uint32_t unused
Definition: kernel.h:5561
uint32_t type
Definition: kernel.h:5552
struct k_sem * sem
Definition: kernel.h:5567
uint32_t state
Definition: kernel.h:5555
uint32_t mode
Definition: kernel.h:5558
struct z_poller * poller
Definition: kernel.h:5546
void * obj
Definition: kernel.h:5565
Definition: kernel.h:5517
sys_dlist_t poll_events
Definition: kernel.h:5519
int result
Definition: kernel.h:5528
unsigned int signaled
Definition: kernel.h:5525
Kernel Spin Lock.
Definition: spinlock.h:43
Definition: thread.h:192
Definition: thread.h:245
struct _thread_base base
Definition: thread.h:247
struct k_heap * resource_pool
Definition: thread.h:328
struct __thread_entry entry
Definition: thread.h:274
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3793
struct _timeout timeout
Definition: kernel.h:3798
struct k_work_q * queue
Definition: kernel.h:3801
struct k_work work
Definition: kernel.h:3795
A structure used to hold work until it can be processed.
Definition: kernel.h:3912
sys_slist_t pending
Definition: kernel.h:3921
_wait_q_t drainq
Definition: kernel.h:3927
_wait_q_t notifyq
Definition: kernel.h:3924
uint32_t flags
Definition: kernel.h:3930
struct k_thread thread
Definition: kernel.h:3914
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3889
const char * name
Definition: kernel.h:3894
bool no_yield
Definition: kernel.h:3908
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3876
struct z_work_canceller canceller
Definition: kernel.h:3879
struct z_work_flusher flusher
Definition: kernel.h:3878
A structure used to submit work.
Definition: kernel.h:3765
k_work_handler_t handler
Definition: kernel.h:3774
uint32_t flags
Definition: kernel.h:3785
struct k_work_q * queue
Definition: kernel.h:3777
sys_snode_t node
Definition: kernel.h:3771
Definition: errno.c:37
Definition: sys_heap.h:56
Definition: mem_stats.h:24
static fdata_t data[2]
Definition: test_fifo_contexts.c:15
static struct k_mbox mbox
Definition: test_mbox_api.c:28
static ZTEST_BMEM char buffer[8]
Definition: test_mbox_api.c:551
static struct k_pipe pipe
Definition: test_mutex_error.c:18
struct k_queue queue
Definition: test_queue_contexts.c:17
static int init_prio
Definition: test_sched_timeslice_and_lock.c:15
static ZTEST_BMEM struct thread_data expected
static uint64_t k_ticks_to_ms_floor64(uint64_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1103
static uint32_t k_ticks_to_ms_floor32(uint32_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1089
static struct k_timer timer[3]
Definition: timeout_order.c:13
static struct k_sem sem[3]
Definition: timeout_order.c:14
static void handler(struct k_timer *timer)
Definition: main.c:19
static const intptr_t user_data[5]
Definition: main.c:588
Macros to abstract toolchain specific capabilities.
static struct k_work_delayable dwork
Definition: main.c:50