nxp,s32-qspi-hyperflash (on qspi bus)

Vendor: NXP Semiconductors N.V.

Note

An implementation of a driver matching this compatible is available in drivers/flash/flash_nxp_s32_qspi_hyperflash.c.

Description

QSPI hyperflash connected to the NXP S32 QSPI bus.

Properties

Node specific properties

Properties not inherited from the base binding file.

Name

Type

Details

device-id-word-addr

int

The word address of the device ID in ASO (Application-Specific Object).
This address specifies the exact location within the memory where the device ID is stored.

This property is required.

rwds-low-dual-error

boolean

Enable Read-Write Data Strobe (RWDS) dual error detect.

secure-region-locked

boolean

The secure region is locked and cannot be accessed or modified.
This is particularly useful in scenarios where sensitive data needs protection from
unauthorized access, such as in financial applications or secure communication systems.
If it is disable, having access to all memory regions is beneficial during development
or debugging phases.

vcc-mv

int

The memory operating voltage supply in mV.

This property is required.

Legal values: 1800, 3000

drive-strength-ohm

int

Specifies the output drive strength in ohm, which based on the operating device VCC.
The supported typical impedance settings:
  For 1.8V: 117 Ohm, 68 Ohm, 45 Ohm, 34 Ohm, 27 Ohm, 24 Ohm, 20 Ohm
  For 3V: 71 Ohm, 40 Ohm, 27 Ohm, 20 Ohm, 16 Ohm, 14 Ohm, 12 Ohm
See the xVCR[14:12] field in VCR configuration register in the memory device datasheet.

This property is required.

Legal values: 12, 14, 16, 20, 24, 27, 34, 40, 45, 68, 71, 117

read-latency-cycles

int

Specifies the read latency in cycles, which is determined based on the operating frequency
as specified in the memory device datasheet.

This property is required.

Legal values: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

support-only-uniform-sectors

boolean

The memory device supports only uniform (256KB) sectors.

ppw-sectors-addr-mapping

string

The mapping of the parameter and read password sectors:
  - LOW: Parameter and read password sectors mapped into lowest addresses
  - HIGH: Parameter and read password sectors mapped into highest addresses

This property is required.

Legal values: 'LOW', 'HIGH'

max-program-buffer-size

int

The maximum of programming page buffer size of the flash memory device,
as specified in the flash memory device datasheet.

This property is required.

write-block-size

int

The number of bytes used in write operations.

This property is required.

jedec-id

uint8-array

JEDEC ID as manufacturer ID, memory type, memory density

size

int

flash capacity in bits

sfdp-bfp

uint8-array

Contains the 32-bit words in little-endian byte order from the
JESD216 Serial Flash Discoverable Parameters Basic Flash
Parameters table.  This provides flash-specific configuration
information in cases were runtime retrieval of SFDP data
is not desired.

quad-enable-requirements

string

Quad Enable Requirements value from JESD216 BFP DW15.

Use NONE if the device detects 1-1-4 and 1-4-4 modes by the
instruction.  Use S1B6 if QE is bit 6 of the first status register
byte, and can be configured by reading then writing one byte with
RDSR and WRSR.  For other fields see the specification.

Legal values: 'NONE', 'S2B1v1', 'S1B6', 'S2B7', 'S2B1v4', 'S2B1v5', 'S2B1v6'

enter-4byte-addr

int

Enter 4-Byte Addressing value from JESD216 BFP DW16

This property is ignored if the device is configured to use SFDP data
from the sfdp-bfp property (CONFIG_SPI_NOR_SFDP_DEVICETREE) or to read
SFDP properties at runtime (CONFIG_SPI_NOR_SFDP_RUNTIME).

For CONFIG_SPI_NOR_SFDP_MINIMAL this is the 8-bit value from bits 31:24
of DW16 identifying ways a device can be placed into 4-byte addressing
mode.  If provided as a non-zero value the driver assumes that 4-byte
addressing is require to access the full address range, and
automatically puts the device into 4-byte address mode when the device
is initialized.

page-size

int

Number of bytes in a page from JESD216 BFP DW11

This property is only used in the CONFIG_SPI_NOR_SFDP_MINIMAL configuration.
It is ignored if the device is configured to use SFDP data
from the sfdp-bfp property (CONFIG_SPI_NOR_SFDP_DEVICETREE) or
if the SFDP parameters are read from the device at
runtime (CONFIG_SPI_NOR_SFDP_RUNTIME).

The default value is 256 bytes if the value is not specified.

Deprecated node specific properties

Deprecated properties not inherited from the base binding file.

(None)

Base properties

Properties inherited from the base binding file, which defines common properties that may be set on many nodes. Not all of these may apply to the “nxp,s32-qspi-hyperflash” compatible.

Name

Type

Details

reg

array

Information used to address the device. The value is specific to
the device (i.e. is different depending on the compatible
property).

The "reg" property is typically a sequence of (address, length) pairs.
Each pair is called a "register block". Values are
conventionally written in hex.

For details, see "2.3.6 reg" in Devicetree Specification v0.4.

This property is required.

See Important properties for more information.

status

string

Indicates the operational status of the hardware or other
resource that the node represents. In particular:

  - "okay" means the resource is operational and, for example,
    can be used by device drivers
  - "disabled" means the resource is not operational and the system
    should treat it as if it is not present

For details, see "2.3.4 status" in Devicetree Specification v0.4.

Legal values: 'ok', 'okay', 'disabled', 'reserved', 'fail', 'fail-sss'

See Important properties for more information.

compatible

string-array

This property is a list of strings that essentially define what
type of hardware or other resource this devicetree node
represents. Each device driver checks for specific compatible
property values to find the devicetree nodes that represent
resources that the driver should manage.

The recommended format is "vendor,device", The "vendor" part is
an abbreviated name of the vendor. The "device" is usually from
the datasheet.

The compatible property can have multiple values, ordered from
most- to least-specific. Having additional values is useful when the
device is a specific instance of a more general family, to allow the
system to match the most specific driver available.

For details, see "2.3.1 compatible" in Devicetree Specification v0.4.

This property is required.

See Important properties for more information.

reg-names

string-array

Optional names given to each register block in the "reg" property.
For example:

  / {
       soc {
           #address-cells = <1>;
           #size-cells = <1>;

           uart@1000 {
               reg = <0x1000 0x2000>, <0x3000 0x4000>;
               reg-names = "foo", "bar";
           };
       };
  };

The uart@1000 node has two register blocks:

  - one with base address 0x1000, size 0x2000, and name "foo"
  - another with base address 0x3000, size 0x4000, and name "bar"

interrupts

array

Information about interrupts generated by the device, encoded as an array
of one or more interrupt specifiers. The format of the data in this property
varies by where the device appears in the interrupt tree. Devices with the same
"interrupt-parent" will use the same format in their interrupts properties.

For details, see "2.4 Interrupts and Interrupt Mapping" in
Devicetree Specification v0.4.

See Important properties for more information.

interrupts-extended

compound

Extended interrupt specifier for device, used as an alternative to
the "interrupts" property.

For details, see "2.4 Interrupts and Interrupt Mapping" in
Devicetree Specification v0.4.

interrupt-names

string-array

Optional names given to each interrupt generated by a device.
The interrupts themselves are defined in either "interrupts" or
"interrupts-extended" properties.

For details, see "2.4 Interrupts and Interrupt Mapping" in
Devicetree Specification v0.4.

interrupt-parent

phandle

If present, this refers to the node which handles interrupts generated
by this device.

For details, see "2.4 Interrupts and Interrupt Mapping" in
Devicetree Specification v0.4.

label

string

Human readable string describing the device. Use of this property is
deprecated except as needed on a case-by-case basis.

For details, see "4.1.2 Miscellaneous Properties" in Devicetree
Specification v0.4.

See Important properties for more information.

clocks

phandle-array

Information about the device's clock providers. In general, this property
should follow conventions established in the dt-schema binding:

  https://github.com/devicetree-org/dt-schema/blob/main/dtschema/schemas/clock/clock.yaml

clock-names

string-array

Optional names given to each clock provider in the "clocks" property.

#address-cells

int

This property encodes the number of <u32> cells used by address fields
in "reg" properties in this node's children.

For details, see "2.3.5 #address-cells and #size-cells" in Devicetree
Specification v0.4.

#size-cells

int

This property encodes the number of <u32> cells used by size fields in
"reg" properties in this node's children.

For details, see "2.3.5 #address-cells and #size-cells" in Devicetree
Specification v0.4.

dmas

phandle-array

DMA channel specifiers relevant to the device.

dma-names

string-array

Optional names given to the DMA channel specifiers in the "dmas" property.

io-channels

phandle-array

IO channel specifiers relevant to the device.

io-channel-names

string-array

Optional names given to the IO channel specifiers in the "io-channels" property.

mboxes

phandle-array

Mailbox / IPM channel specifiers relevant to the device.

mbox-names

string-array

Optional names given to the mbox specifiers in the "mboxes" property.

power-domains

phandle-array

Power domain specifiers relevant to the device.

power-domain-names

string-array

Optional names given to the power domain specifiers in the "power-domains" property.

#power-domain-cells

int

Number of cells in power-domains property

zephyr,deferred-init

boolean

Do not initialize device automatically on boot. Device should be manually
initialized using device_init().

wakeup-source

boolean

Property to identify that a device can be used as wake up source.

When this property is provided a specific flag is set into the
device that tells the system that the device is capable of
wake up the system.

Wake up capable devices are disabled (interruptions will not wake up
the system) by default but they can be enabled at runtime if necessary.

zephyr,pm-device-runtime-auto

boolean

Automatically configure the device for runtime power management after the
init function runs.

zephyr,disabling-power-states

phandles

List of power states that will disable this device power.