ti,tps55287 (on i2c bus)

Description

TPS55287 regulator

Properties

Node specific properties

Properties not inherited from the base binding file.

Name

Type

Details

supply-gpios

phandle-array

GPIO specifier that controls power to the device.

This property should be provided when the device has a dedicated
switch that controls power to the device.  The supply state is
entirely the responsibility of the device driver.

Contrast with vin-supply.

vin-supply

phandle

Reference to the regulator that controls power to the device.
The referenced devicetree node must have a regulator compatible.

This property should be provided when device power is supplied
by a shared regulator.  The supply state is dependent on the
request status of all devices fed by the regulator.

Contrast with supply-gpios.  If both properties are provided
then the regulator must be requested before the supply GPIOS is
set to an active state, and the supply GPIOS must be set to an
inactive state before releasing the regulator.

regulator-name

string

A string used as a descriptive name for regulator outputs

regulator-init-microvolt

int

Voltage set during initialisation

regulator-min-microvolt

int

smallest voltage consumers may set

regulator-max-microvolt

int

largest voltage consumers may set

regulator-microvolt-offset

int

Offset applied to voltages to compensate for voltage drops

regulator-init-microamp

int

Current set during initialisation

regulator-min-microamp

int

smallest current consumers may set

regulator-max-microamp

int

largest current consumers may set

regulator-input-current-limit-microamp

int

maximum input current regulator allows

regulator-always-on

boolean

boolean, regulator should never be disabled

regulator-boot-on

boolean

bootloader/firmware enabled regulator.
It's expected that this regulator was left on by the bootloader.
If the bootloader didn't leave it on then OS should turn it on
at boot but shouldn't prevent it from being turned off later.
This property is intended to only be used for regulators where
software cannot read the state of the regulator.

regulator-boot-off

boolean

Regulator should be disabled on boot.

regulator-allow-bypass

boolean

allow the regulator to go into bypass mode

regulator-allow-set-load

boolean

allow the regulator performance level to be configured

regulator-ramp-delay

int

ramp delay for regulator(in uV/us) For hardware which supports disabling
ramp rate, it should be explicitly initialised to zero
(regulator-ramp-delay = <0>) for disabling ramp delay.

regulator-enable-ramp-delay

int

The time taken, in microseconds, for the supply rail to reach the target
voltage, plus/minus whatever tolerance the board design requires. This
property describes the total system ramp time required due to the
combination of internal ramping of the regulator itself, and board design
issues such as trace capacitance and load on the supply.

regulator-settling-time-us

int

Settling time, in microseconds, for voltage change if regulator have the
constant time for any level voltage change. This is useful when regulator
have exponential voltage change.

regulator-settling-time-up-us

int

Settling time, in microseconds, for voltage increase if the regulator
needs a constant time to settle after voltage increases of any level. This
is useful for regulators with exponential voltage changes.

regulator-settling-time-down-us

int

Settling time, in microseconds, for voltage decrease if the regulator
needs a constant time to settle after voltage decreases of any level. This
is useful for regulators with exponential voltage changes.

regulator-soft-start

boolean

Enable soft start so that voltage ramps slowly

regulator-initial-mode

int

Initial operating mode. The set of possible operating modes depends on the
capabilities of every hardware so each device binding documentation
explains which values the regulator supports.

regulator-allowed-modes

array

List of operating modes that software is allowed to configure for the
regulator at run-time. Elements may be specified in any order. The set of
possible operating modes depends on the capabilities of every hardware so
each device binding document explains which values the regulator supports.

regulator-system-load

int

Load in uA present on regulator that is not captured by any consumer
request.

regulator-pull-down

boolean

Enable pull down resistor when the regulator is disabled.

regulator-over-current-protection

boolean

Enable over current protection.

regulator-oc-protection-microamp

int

Set over current protection limit. This is a limit where hardware performs
emergency shutdown. Zero can be passed to disable protection and value '1'
indicates that protection should be enabled but limit setting can be
omitted.

regulator-oc-error-microamp

int

Set over current error limit. This is a limit where part of the hardware
probably is malfunctional and damage prevention is requested. Zero can be
passed to disable error detection and value '1' indicates that detection
should be enabled but limit setting can be omitted.

regulator-oc-warn-microamp

int

Set over current warning limit. This is a limit where hardware is assumed
still to be functional but approaching limit where it gets damaged.
Recovery actions should be initiated. Zero can be passed to disable
detection and value '1' indicates that detection should be enabled but
limit setting can be omitted.

regulator-ov-protection-microvolt

int

Set over voltage protection limit. This is a limit where hardware performs
emergency shutdown. Zero can be passed to disable protection and value '1'
indicates that protection should be enabled but limit setting can be
omitted. Limit is given as microvolt offset from voltage set to regulator.

regulator-ov-error-microvolt

int

Set over voltage error limit. This is a limit where part of the hardware
probably is malfunctional and damage prevention is requested Zero can be
passed to disable error detection and value '1' indicates that detection
should be enabled but limit setting can be omitted. Limit is given as
microvolt offset from voltage set to regulator.

regulator-ov-warn-microvolt

int

Set over voltage warning limit. This is a limit where hardware is assumed
still to be functional but approaching limit where it gets damaged.
Recovery actions should be initiated. Zero can be passed to disable
detection and value '1' indicates that detection should be enabled but
limit setting can be omitted. Limit is given as microvolt offset from
voltage set to regulator.

regulator-uv-protection-microvolt

int

Set over under voltage protection limit. This is a limit where hardware
performs emergency shutdown. Zero can be passed to disable protection and
value '1' indicates that protection should be enabled but limit setting
can be omitted. Limit is given as microvolt offset from voltage set to
regulator.

regulator-uv-error-microvolt

int

Set under voltage error limit. This is a limit where part of the hardware
probably is malfunctional and damage prevention is requested Zero can be
passed to disable error detection and value '1' indicates that detection
should be enabled but limit setting can be omitted. Limit is given as
microvolt offset from voltage set to regulator.

regulator-uv-warn-microvolt

int

Set over under voltage warning limit. This is a limit where hardware is
assumed still to be functional but approaching limit where it gets
damaged. Recovery actions should be initiated. Zero can be passed to
disable detection and value '1' indicates that detection should be enabled
but limit setting can be omitted. Limit is given as microvolt offset from
voltage set to regulator.

regulator-temp-protection-kelvin

int

Set over temperature protection limit. This is a limit where hardware
performs emergency shutdown. Zero can be passed to disable protection and
value '1' indicates that protection should be enabled but limit setting
can be omitted.

regulator-temp-error-kelvin

int

Set over temperature error limit. This is a limit where part of the
hardware probably is malfunctional and damage prevention is requested Zero
can be passed to disable error detection and value '1' indicates that
detection should be enabled but limit setting can be omitted.

regulator-temp-warn-kelvin

int

Set over temperature warning limit. This is a limit where hardware is
assumed still to be functional but approaching limit where it gets
damaged. Recovery actions should be initiated. Zero can be passed to
disable detection and value '1' indicates that detection should be enabled
but limit setting can be omitted.

regulator-active-discharge

int

tristate, enable/disable active discharge of regulators. The values are:
0: Disable active discharge.
1: Enable active discharge.
Absence of this property will leave configuration to default.

Legal values: 0, 1

regulator-max-step-microvolt

int

Maximum difference between current and target voltages that can be changed
safely in a single step.

startup-delay-us

int

Startup time, in microseconds

off-on-delay-us

int

Off to on delay time, in microseconds

Deprecated node specific properties

Deprecated properties not inherited from the base binding file.

(None)

Base properties

Properties inherited from the base binding file, which defines common properties that may be set on many nodes. Not all of these may apply to the “ti,tps55287” compatible.

Name

Type

Details

reg

array

device address on i2c bus

This property is required.

See Important properties for more information.

status

string

Indicates the operational status of the hardware or other
resource that the node represents. In particular:

  - "okay" means the resource is operational and, for example,
    can be used by device drivers
  - "disabled" means the resource is not operational and the system
    should treat it as if it is not present

For details, see "2.3.4 status" in Devicetree Specification v0.4.

Legal values: 'okay', 'disabled', 'reserved', 'fail', 'fail-sss'

See Important properties for more information.

compatible

string-array

This property is a list of strings that essentially define what
type of hardware or other resource this devicetree node
represents. Each device driver checks for specific compatible
property values to find the devicetree nodes that represent
resources that the driver should manage.

The recommended format is "vendor,device", The "vendor" part is
an abbreviated name of the vendor. The "device" is usually from
the datasheet.

The compatible property can have multiple values, ordered from
most- to least-specific. Having additional values is useful when the
device is a specific instance of a more general family, to allow the
system to match the most specific driver available.

For details, see "2.3.1 compatible" in Devicetree Specification v0.4.

This property is required.

See Important properties for more information.

reg-names

string-array

Optional names given to each register block in the "reg" property.
For example:

  / {
       soc {
           #address-cells = <1>;
           #size-cells = <1>;

           uart@1000 {
               reg = <0x1000 0x2000>, <0x3000 0x4000>;
               reg-names = "foo", "bar";
           };
       };
  };

The uart@1000 node has two register blocks:

  - one with base address 0x1000, size 0x2000, and name "foo"
  - another with base address 0x3000, size 0x4000, and name "bar"

interrupts

array

Information about interrupts generated by the device, encoded as an array
of one or more interrupt specifiers. The format of the data in this property
varies by where the device appears in the interrupt tree. Devices with the same
"interrupt-parent" will use the same format in their interrupts properties.

For details, see "2.4 Interrupts and Interrupt Mapping" in
Devicetree Specification v0.4.

See Important properties for more information.

interrupts-extended

compound

Extended interrupt specifier for device, used as an alternative to
the "interrupts" property.

For details, see "2.4 Interrupts and Interrupt Mapping" in
Devicetree Specification v0.4.

interrupt-names

string-array

Optional names given to each interrupt generated by a device.
The interrupts themselves are defined in either "interrupts" or
"interrupts-extended" properties.

For details, see "2.4 Interrupts and Interrupt Mapping" in
Devicetree Specification v0.4.

interrupt-parent

phandle

If present, this refers to the node which handles interrupts generated
by this device.

For details, see "2.4 Interrupts and Interrupt Mapping" in
Devicetree Specification v0.4.

label

string

Human readable string describing the device. Use of this property is
deprecated except as needed on a case-by-case basis.

For details, see "4.1.2 Miscellaneous Properties" in Devicetree
Specification v0.4.

See Important properties for more information.

clocks

phandle-array

Information about the device's clock providers. In general, this property
should follow conventions established in the dt-schema binding:

  https://github.com/devicetree-org/dt-schema/blob/main/dtschema/schemas/clock/clock.yaml

clock-names

string-array

Optional names given to each clock provider in the "clocks" property.

#address-cells

int

This property encodes the number of <u32> cells used by address fields
in "reg" properties in this node's children.

For details, see "2.3.5 #address-cells and #size-cells" in Devicetree
Specification v0.4.

#size-cells

int

This property encodes the number of <u32> cells used by size fields in
"reg" properties in this node's children.

For details, see "2.3.5 #address-cells and #size-cells" in Devicetree
Specification v0.4.

dmas

phandle-array

DMA channel specifiers relevant to the device.

dma-names

string-array

Optional names given to the DMA channel specifiers in the "dmas" property.

io-channels

phandle-array

IO channel specifiers relevant to the device.

io-channel-names

string-array

Optional names given to the IO channel specifiers in the "io-channels" property.

mboxes

phandle-array

Mailbox / IPM channel specifiers relevant to the device.

mbox-names

string-array

Optional names given to the mbox specifiers in the "mboxes" property.

power-domains

phandle-array

Power domain specifiers relevant to the device.

power-domain-names

string-array

Optional names given to the power domain specifiers in the "power-domains" property.

#power-domain-cells

int

Number of cells in power-domains property

hwlocks

phandle-array

HW spinlock id relevant to the device.

hwlock-names

string-array

Optional names given to the hwlock specifiers in the "hwlocks" property.

zephyr,deferred-init

boolean

Do not initialize device automatically on boot. Device should be manually
initialized using device_init().

wakeup-source

boolean

Property to identify that a device can be used as wake up source.

When this property is provided a specific flag is set into the
device that tells the system that the device is capable of
wake up the system.

Wake up capable devices are disabled (interruptions will not wake up
the system) by default but they can be enabled at runtime if necessary.

zephyr,pm-device-runtime-auto

boolean

Automatically configure the device for runtime power management after the
init function runs.

zephyr,disabling-power-states

phandles

List of power states that will disable this device power.