Zephyr Project API 4.2.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31/*
32 * Zephyr currently assumes the size of a couple standard types to simplify
33 * print string formats. Let's make sure this doesn't change without notice.
34 */
35BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
36BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
37BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
38
48#define K_ANY NULL
49
50#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
51#error Zero available thread priorities defined!
52#endif
53
54#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
55#define K_PRIO_PREEMPT(x) (x)
56
57#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
58#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
59#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
60#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
61#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
62
63#ifdef CONFIG_POLL
64#define Z_POLL_EVENT_OBJ_INIT(obj) \
65 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
66#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#else
68#define Z_POLL_EVENT_OBJ_INIT(obj)
69#define Z_DECL_POLL_EVENT
70#endif
71
72struct k_thread;
73struct k_mutex;
74struct k_sem;
75struct k_msgq;
76struct k_mbox;
77struct k_pipe;
78struct k_queue;
79struct k_fifo;
80struct k_lifo;
81struct k_stack;
82struct k_mem_slab;
83struct k_timer;
84struct k_poll_event;
85struct k_poll_signal;
86struct k_mem_domain;
87struct k_mem_partition;
88struct k_futex;
89struct k_event;
90
96
97/* private, used by k_poll and k_work_poll */
98struct k_work_poll;
99typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
100
106typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
107 void *user_data);
108
124void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
125
144#ifdef CONFIG_SMP
145void k_thread_foreach_filter_by_cpu(unsigned int cpu,
146 k_thread_user_cb_t user_cb, void *user_data);
147#else
148static inline
149void k_thread_foreach_filter_by_cpu(unsigned int cpu,
150 k_thread_user_cb_t user_cb, void *user_data)
151{
152 __ASSERT(cpu == 0, "cpu filter out of bounds");
153 ARG_UNUSED(cpu);
154 k_thread_foreach(user_cb, user_data);
155}
156#endif
157
186 k_thread_user_cb_t user_cb, void *user_data);
187
219#ifdef CONFIG_SMP
221 k_thread_user_cb_t user_cb, void *user_data);
222#else
223static inline
224void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu,
225 k_thread_user_cb_t user_cb, void *user_data)
226{
227 __ASSERT(cpu == 0, "cpu filter out of bounds");
228 ARG_UNUSED(cpu);
229 k_thread_foreach_unlocked(user_cb, user_data);
230}
231#endif
232
241#endif /* !_ASMLANGUAGE */
242
243
244/*
245 * Thread user options. May be needed by assembly code. Common part uses low
246 * bits, arch-specific use high bits.
247 */
248
252#define K_ESSENTIAL (BIT(0))
253
254#define K_FP_IDX 1
264#define K_FP_REGS (BIT(K_FP_IDX))
265
272#define K_USER (BIT(2))
273
282#define K_INHERIT_PERMS (BIT(3))
283
293#define K_CALLBACK_STATE (BIT(4))
294
304#define K_DSP_IDX 6
305#define K_DSP_REGS (BIT(K_DSP_IDX))
306
315#define K_AGU_IDX 7
316#define K_AGU_REGS (BIT(K_AGU_IDX))
317
327#define K_SSE_REGS (BIT(7))
328
329/* end - thread options */
330
331#if !defined(_ASMLANGUAGE)
356__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
357
371
423__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
424 k_thread_stack_t *stack,
425 size_t stack_size,
427 void *p1, void *p2, void *p3,
428 int prio, uint32_t options, k_timeout_t delay);
429
452 void *p1, void *p2,
453 void *p3);
454
468#define k_thread_access_grant(thread, ...) \
469 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
470
485static inline void k_thread_heap_assign(struct k_thread *thread,
486 struct k_heap *heap)
487{
488 thread->resource_pool = heap;
489}
490
491#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
512__syscall int k_thread_stack_space_get(const struct k_thread *thread,
513 size_t *unused_ptr);
514#endif
515
516#if (K_HEAP_MEM_POOL_SIZE > 0)
529void k_thread_system_pool_assign(struct k_thread *thread);
530#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
531
551__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
552
566__syscall int32_t k_sleep(k_timeout_t timeout);
567
579static inline int32_t k_msleep(int32_t ms)
580{
581 return k_sleep(Z_TIMEOUT_MS(ms));
582}
583
601
618__syscall void k_busy_wait(uint32_t usec_to_wait);
619
631bool k_can_yield(void);
632
640__syscall void k_yield(void);
641
651__syscall void k_wakeup(k_tid_t thread);
652
666__attribute_const__
668
675__attribute_const__
676static inline k_tid_t k_current_get(void)
677{
678#ifdef CONFIG_CURRENT_THREAD_USE_TLS
679
680 /* Thread-local cache of current thread ID, set in z_thread_entry() */
681 extern Z_THREAD_LOCAL k_tid_t z_tls_current;
682
683 return z_tls_current;
684#else
686#endif
687}
688
708__syscall void k_thread_abort(k_tid_t thread);
709
710k_ticks_t z_timeout_expires(const struct _timeout *timeout);
711k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
712
713#ifdef CONFIG_SYS_CLOCK_EXISTS
714
722__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
723
724static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
725 const struct k_thread *thread)
726{
727 return z_timeout_expires(&thread->base.timeout);
728}
729
738
739static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
740 const struct k_thread *thread)
741{
742 return z_timeout_remaining(&thread->base.timeout);
743}
744
745#endif /* CONFIG_SYS_CLOCK_EXISTS */
746
751struct _static_thread_data {
752 struct k_thread *init_thread;
753 k_thread_stack_t *init_stack;
754 unsigned int init_stack_size;
756 void *init_p1;
757 void *init_p2;
758 void *init_p3;
759 int init_prio;
760 uint32_t init_options;
761 const char *init_name;
762#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
763 int32_t init_delay_ms;
764#else
765 k_timeout_t init_delay;
766#endif
767};
768
769#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
770#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
771#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
772#else
773#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS_INIT(ms)
774#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
775#endif
776
777#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
778 entry, p1, p2, p3, \
779 prio, options, delay, tname) \
780 { \
781 .init_thread = (thread), \
782 .init_stack = (stack), \
783 .init_stack_size = (stack_size), \
784 .init_entry = (k_thread_entry_t)entry, \
785 .init_p1 = (void *)p1, \
786 .init_p2 = (void *)p2, \
787 .init_p3 = (void *)p3, \
788 .init_prio = (prio), \
789 .init_options = (options), \
790 .init_name = STRINGIFY(tname), \
791 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
792 }
793
794/*
795 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
796 * information on arguments.
797 */
798#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
799 entry, p1, p2, p3, \
800 prio, options, delay) \
801 struct k_thread _k_thread_obj_##name; \
802 STRUCT_SECTION_ITERABLE(_static_thread_data, \
803 _k_thread_data_##name) = \
804 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
805 _k_thread_stack_##name, stack_size,\
806 entry, p1, p2, p3, prio, options, \
807 delay, name); \
808 __maybe_unused const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
809
845#define K_THREAD_DEFINE(name, stack_size, \
846 entry, p1, p2, p3, \
847 prio, options, delay) \
848 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
849 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
850 prio, options, delay)
851
882#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
883 entry, p1, p2, p3, \
884 prio, options, delay) \
885 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
886 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
887 prio, options, delay)
888
898__syscall int k_thread_priority_get(k_tid_t thread);
899
925__syscall void k_thread_priority_set(k_tid_t thread, int prio);
926
927
928#ifdef CONFIG_SCHED_DEADLINE
961__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
962
1004__syscall void k_thread_absolute_deadline_set(k_tid_t thread, int deadline);
1005#endif
1006
1025__syscall void k_reschedule(void);
1026
1027#ifdef CONFIG_SCHED_CPU_MASK
1041
1055
1069
1083
1094int k_thread_cpu_pin(k_tid_t thread, int cpu);
1095#endif
1096
1118__syscall void k_thread_suspend(k_tid_t thread);
1119
1131__syscall void k_thread_resume(k_tid_t thread);
1132
1146static inline void k_thread_start(k_tid_t thread)
1147{
1148 k_wakeup(thread);
1149}
1150
1177void k_sched_time_slice_set(int32_t slice, int prio);
1178
1217void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1218 k_thread_timeslice_fn_t expired, void *data);
1219
1238bool k_is_in_isr(void);
1239
1256__syscall int k_is_preempt_thread(void);
1257
1269static inline bool k_is_pre_kernel(void)
1270{
1271 extern bool z_sys_post_kernel; /* in init.c */
1272
1273 return !z_sys_post_kernel;
1274}
1275
1310void k_sched_lock(void);
1311
1320
1333__syscall void k_thread_custom_data_set(void *value);
1334
1342__syscall void *k_thread_custom_data_get(void);
1343
1357__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1358
1367const char *k_thread_name_get(k_tid_t thread);
1368
1380__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1381 size_t size);
1382
1395const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1396
1414#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1415
1428#define K_NSEC(t) Z_TIMEOUT_NS(t)
1429
1442#define K_USEC(t) Z_TIMEOUT_US(t)
1443
1454#define K_CYC(t) Z_TIMEOUT_CYC(t)
1455
1466#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1467
1478#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1479
1490#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1491
1502#define K_MINUTES(m) K_SECONDS((m) * 60)
1503
1514#define K_HOURS(h) K_MINUTES((h) * 60)
1515
1524#define K_FOREVER Z_FOREVER
1525
1526#ifdef CONFIG_TIMEOUT_64BIT
1527
1539#define K_TIMEOUT_ABS_TICKS(t) \
1540 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)CLAMP(t, 0, (INT64_MAX - 1))))
1541
1553#define K_TIMEOUT_ABS_SEC(t) K_TIMEOUT_ABS_TICKS(k_sec_to_ticks_ceil64(t))
1554
1566#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1567
1580#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1581
1594#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1595
1608#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1609
1610#endif
1611
1620struct k_timer {
1621 /*
1622 * _timeout structure must be first here if we want to use
1623 * dynamic timer allocation. timeout.node is used in the double-linked
1624 * list of free timers
1625 */
1626 struct _timeout timeout;
1627
1628 /* wait queue for the (single) thread waiting on this timer */
1629 _wait_q_t wait_q;
1630
1631 /* runs in ISR context */
1632 void (*expiry_fn)(struct k_timer *timer);
1633
1634 /* runs in the context of the thread that calls k_timer_stop() */
1635 void (*stop_fn)(struct k_timer *timer);
1636
1637 /* timer period */
1638 k_timeout_t period;
1639
1640 /* timer status */
1641 uint32_t status;
1642
1643 /* user-specific data, also used to support legacy features */
1644 void *user_data;
1645
1647
1648#ifdef CONFIG_OBJ_CORE_TIMER
1649 struct k_obj_core obj_core;
1650#endif
1651};
1652
1653#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1654 { \
1655 .timeout = { \
1656 .node = {},\
1657 .fn = z_timer_expiration_handler, \
1658 .dticks = 0, \
1659 }, \
1660 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1661 .expiry_fn = expiry, \
1662 .stop_fn = stop, \
1663 .period = {}, \
1664 .status = 0, \
1665 .user_data = 0, \
1666 }
1667
1688typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1689
1704typedef void (*k_timer_stop_t)(struct k_timer *timer);
1705
1717#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1718 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1719 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1720
1730void k_timer_init(struct k_timer *timer,
1731 k_timer_expiry_t expiry_fn,
1732 k_timer_stop_t stop_fn);
1733
1748__syscall void k_timer_start(struct k_timer *timer,
1749 k_timeout_t duration, k_timeout_t period);
1750
1767__syscall void k_timer_stop(struct k_timer *timer);
1768
1781__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1782
1800__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1801
1802#ifdef CONFIG_SYS_CLOCK_EXISTS
1803
1814__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1815
1816static inline k_ticks_t z_impl_k_timer_expires_ticks(
1817 const struct k_timer *timer)
1818{
1819 return z_timeout_expires(&timer->timeout);
1820}
1821
1832__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1833
1834static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1835 const struct k_timer *timer)
1836{
1837 return z_timeout_remaining(&timer->timeout);
1838}
1839
1850static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1851{
1853}
1854
1855#endif /* CONFIG_SYS_CLOCK_EXISTS */
1856
1869__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1870
1874static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1875 void *user_data)
1876{
1877 timer->user_data = user_data;
1878}
1879
1887__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1888
1889static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1890{
1891 return timer->user_data;
1892}
1893
1911__syscall int64_t k_uptime_ticks(void);
1912
1926static inline int64_t k_uptime_get(void)
1927{
1929}
1930
1950static inline uint32_t k_uptime_get_32(void)
1951{
1952 return (uint32_t)k_uptime_get();
1953}
1954
1963static inline uint32_t k_uptime_seconds(void)
1964{
1966}
1967
1979static inline int64_t k_uptime_delta(int64_t *reftime)
1980{
1981 int64_t uptime, delta;
1982
1983 uptime = k_uptime_get();
1984 delta = uptime - *reftime;
1985 *reftime = uptime;
1986
1987 return delta;
1988}
1989
1998static inline uint32_t k_cycle_get_32(void)
1999{
2000 return arch_k_cycle_get_32();
2001}
2002
2013static inline uint64_t k_cycle_get_64(void)
2014{
2015 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
2016 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
2017 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
2018 return 0;
2019 }
2020
2021 return arch_k_cycle_get_64();
2022}
2023
2028struct k_queue {
2031 _wait_q_t wait_q;
2032
2033 Z_DECL_POLL_EVENT
2034
2036};
2037
2042#define Z_QUEUE_INITIALIZER(obj) \
2043 { \
2044 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
2045 .lock = { }, \
2046 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2047 Z_POLL_EVENT_OBJ_INIT(obj) \
2048 }
2049
2067__syscall void k_queue_init(struct k_queue *queue);
2068
2082__syscall void k_queue_cancel_wait(struct k_queue *queue);
2083
2096void k_queue_append(struct k_queue *queue, void *data);
2097
2114__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
2115
2128void k_queue_prepend(struct k_queue *queue, void *data);
2129
2146__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
2147
2161void k_queue_insert(struct k_queue *queue, void *prev, void *data);
2162
2181int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2182
2198int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2199
2217__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2218
2235bool k_queue_remove(struct k_queue *queue, void *data);
2236
2251bool k_queue_unique_append(struct k_queue *queue, void *data);
2252
2266__syscall int k_queue_is_empty(struct k_queue *queue);
2267
2268static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2269{
2270 return sys_sflist_is_empty(&queue->data_q) ? 1 : 0;
2271}
2272
2282__syscall void *k_queue_peek_head(struct k_queue *queue);
2283
2293__syscall void *k_queue_peek_tail(struct k_queue *queue);
2294
2304#define K_QUEUE_DEFINE(name) \
2305 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2306 Z_QUEUE_INITIALIZER(name)
2307
2310#ifdef CONFIG_USERSPACE
2320struct k_futex {
2322};
2323
2331struct z_futex_data {
2332 _wait_q_t wait_q;
2333 struct k_spinlock lock;
2334};
2335
2336#define Z_FUTEX_DATA_INITIALIZER(obj) \
2337 { \
2338 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2339 }
2340
2366__syscall int k_futex_wait(struct k_futex *futex, int expected,
2367 k_timeout_t timeout);
2368
2383__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2384
2386#endif
2387
2399struct k_event {
2400 _wait_q_t wait_q;
2403
2405
2406#ifdef CONFIG_OBJ_CORE_EVENT
2407 struct k_obj_core obj_core;
2408#endif
2409
2410};
2411
2412#define Z_EVENT_INITIALIZER(obj) \
2413 { \
2414 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2415 .events = 0, \
2416 .lock = {}, \
2417 }
2418
2426__syscall void k_event_init(struct k_event *event);
2427
2445__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2446
2464__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2465
2482__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2483 uint32_t events_mask);
2484
2497__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2498
2523__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2524 bool reset, k_timeout_t timeout);
2525
2550__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2551 bool reset, k_timeout_t timeout);
2552
2572__syscall uint32_t k_event_wait_safe(struct k_event *event, uint32_t events,
2573 bool reset, k_timeout_t timeout);
2574
2594__syscall uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events,
2595 bool reset, k_timeout_t timeout);
2596
2597
2598
2609static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2610{
2611 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2612}
2613
2623#define K_EVENT_DEFINE(name) \
2624 STRUCT_SECTION_ITERABLE(k_event, name) = \
2625 Z_EVENT_INITIALIZER(name);
2626
2629struct k_fifo {
2630 struct k_queue _queue;
2631#ifdef CONFIG_OBJ_CORE_FIFO
2632 struct k_obj_core obj_core;
2633#endif
2634};
2635
2639#define Z_FIFO_INITIALIZER(obj) \
2640 { \
2641 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2642 }
2643
2661#define k_fifo_init(fifo) \
2662 ({ \
2663 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2664 k_queue_init(&(fifo)->_queue); \
2665 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2666 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2667 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2668 })
2669
2681#define k_fifo_cancel_wait(fifo) \
2682 ({ \
2683 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2684 k_queue_cancel_wait(&(fifo)->_queue); \
2685 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2686 })
2687
2700#define k_fifo_put(fifo, data) \
2701 ({ \
2702 void *_data = data; \
2703 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, _data); \
2704 k_queue_append(&(fifo)->_queue, _data); \
2705 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, _data); \
2706 })
2707
2724#define k_fifo_alloc_put(fifo, data) \
2725 ({ \
2726 void *_data = data; \
2727 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, _data); \
2728 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, _data); \
2729 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, _data, fap_ret); \
2730 fap_ret; \
2731 })
2732
2747#define k_fifo_put_list(fifo, head, tail) \
2748 ({ \
2749 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2750 k_queue_append_list(&(fifo)->_queue, head, tail); \
2751 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2752 })
2753
2767#define k_fifo_put_slist(fifo, list) \
2768 ({ \
2769 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2770 k_queue_merge_slist(&(fifo)->_queue, list); \
2771 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2772 })
2773
2791#define k_fifo_get(fifo, timeout) \
2792 ({ \
2793 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2794 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2795 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2796 fg_ret; \
2797 })
2798
2812#define k_fifo_is_empty(fifo) \
2813 k_queue_is_empty(&(fifo)->_queue)
2814
2828#define k_fifo_peek_head(fifo) \
2829 ({ \
2830 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2831 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2832 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2833 fph_ret; \
2834 })
2835
2847#define k_fifo_peek_tail(fifo) \
2848 ({ \
2849 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2850 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2851 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2852 fpt_ret; \
2853 })
2854
2864#define K_FIFO_DEFINE(name) \
2865 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2866 Z_FIFO_INITIALIZER(name)
2867
2870struct k_lifo {
2871 struct k_queue _queue;
2872#ifdef CONFIG_OBJ_CORE_LIFO
2873 struct k_obj_core obj_core;
2874#endif
2875};
2876
2881#define Z_LIFO_INITIALIZER(obj) \
2882 { \
2883 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2884 }
2885
2903#define k_lifo_init(lifo) \
2904 ({ \
2905 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2906 k_queue_init(&(lifo)->_queue); \
2907 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2908 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2909 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2910 })
2911
2924#define k_lifo_put(lifo, data) \
2925 ({ \
2926 void *_data = data; \
2927 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, _data); \
2928 k_queue_prepend(&(lifo)->_queue, _data); \
2929 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, _data); \
2930 })
2931
2948#define k_lifo_alloc_put(lifo, data) \
2949 ({ \
2950 void *_data = data; \
2951 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, _data); \
2952 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, _data); \
2953 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, _data, lap_ret); \
2954 lap_ret; \
2955 })
2956
2974#define k_lifo_get(lifo, timeout) \
2975 ({ \
2976 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2977 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2978 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2979 lg_ret; \
2980 })
2981
2991#define K_LIFO_DEFINE(name) \
2992 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2993 Z_LIFO_INITIALIZER(name)
2994
3000#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
3001
3002typedef uintptr_t stack_data_t;
3003
3004struct k_stack {
3005 _wait_q_t wait_q;
3006 struct k_spinlock lock;
3007 stack_data_t *base, *next, *top;
3008
3009 uint8_t flags;
3010
3012
3013#ifdef CONFIG_OBJ_CORE_STACK
3014 struct k_obj_core obj_core;
3015#endif
3016};
3017
3018#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
3019 { \
3020 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3021 .base = (stack_buffer), \
3022 .next = (stack_buffer), \
3023 .top = (stack_buffer) + (stack_num_entries), \
3024 }
3025
3045void k_stack_init(struct k_stack *stack,
3046 stack_data_t *buffer, uint32_t num_entries);
3047
3048
3063__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
3064 uint32_t num_entries);
3065
3077int k_stack_cleanup(struct k_stack *stack);
3078
3092__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
3093
3114__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
3115 k_timeout_t timeout);
3116
3127#define K_STACK_DEFINE(name, stack_num_entries) \
3128 stack_data_t __noinit \
3129 _k_stack_buf_##name[stack_num_entries]; \
3130 STRUCT_SECTION_ITERABLE(k_stack, name) = \
3131 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
3132 stack_num_entries)
3133
3140struct k_work;
3141struct k_work_q;
3142struct k_work_queue_config;
3143extern struct k_work_q k_sys_work_q;
3144
3159struct k_mutex {
3161 _wait_q_t wait_q;
3164
3167
3170
3172
3173#ifdef CONFIG_OBJ_CORE_MUTEX
3174 struct k_obj_core obj_core;
3175#endif
3176};
3177
3181#define Z_MUTEX_INITIALIZER(obj) \
3182 { \
3183 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3184 .owner = NULL, \
3185 .lock_count = 0, \
3186 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3187 }
3188
3202#define K_MUTEX_DEFINE(name) \
3203 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3204 Z_MUTEX_INITIALIZER(name)
3205
3218__syscall int k_mutex_init(struct k_mutex *mutex);
3219
3220
3242__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
3243
3264__syscall int k_mutex_unlock(struct k_mutex *mutex);
3265
3272 _wait_q_t wait_q;
3273
3274#ifdef CONFIG_OBJ_CORE_CONDVAR
3275 struct k_obj_core obj_core;
3276#endif
3277};
3278
3279#define Z_CONDVAR_INITIALIZER(obj) \
3280 { \
3281 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3282 }
3283
3296__syscall int k_condvar_init(struct k_condvar *condvar);
3297
3304__syscall int k_condvar_signal(struct k_condvar *condvar);
3305
3313__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3314
3332__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3333 k_timeout_t timeout);
3334
3345#define K_CONDVAR_DEFINE(name) \
3346 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3347 Z_CONDVAR_INITIALIZER(name)
3364struct k_sem {
3368 _wait_q_t wait_q;
3369 unsigned int count;
3370 unsigned int limit;
3371
3372 Z_DECL_POLL_EVENT
3373
3375
3376#ifdef CONFIG_OBJ_CORE_SEM
3377 struct k_obj_core obj_core;
3378#endif
3380};
3381
3386#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3387 { \
3388 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3389 .count = (initial_count), \
3390 .limit = (count_limit), \
3391 Z_POLL_EVENT_OBJ_INIT(obj) \
3392 }
3393
3406#define K_SEM_MAX_LIMIT UINT_MAX
3407
3423__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3424 unsigned int limit);
3425
3444__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3445
3456__syscall void k_sem_give(struct k_sem *sem);
3457
3467__syscall void k_sem_reset(struct k_sem *sem);
3468
3478__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3479
3483static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3484{
3485 return sem->count;
3486}
3487
3499#define K_SEM_DEFINE(name, initial_count, count_limit) \
3500 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3501 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3502 BUILD_ASSERT(((count_limit) != 0) && \
3503 (((initial_count) < (count_limit)) || ((initial_count) == (count_limit))) && \
3504 ((count_limit) <= K_SEM_MAX_LIMIT));
3505
3508#if defined(CONFIG_SCHED_IPI_SUPPORTED) || defined(__DOXYGEN__)
3509struct k_ipi_work;
3510
3515typedef void (*k_ipi_func_t)(struct k_ipi_work *work);
3516
3517struct k_ipi_work {
3518 sys_dnode_t node[CONFIG_MP_MAX_NUM_CPUS]; /* Node in IPI work queue */
3519 k_ipi_func_t func; /* Function to execute on target CPU */
3520 struct k_event event; /* Event to signal when processed */
3521 uint32_t bitmask; /* Bitmask of targeted CPUs */
3522};
3523
3533static inline void k_ipi_work_init(struct k_ipi_work *work)
3534{
3535 k_event_init(&work->event);
3536 for (unsigned int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) {
3537 sys_dnode_init(&work->node[i]);
3538 }
3539 work->bitmask = 0;
3540}
3541
3560int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask,
3561 k_ipi_func_t func);
3562
3585int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout);
3586
3596
3597#endif /* CONFIG_SCHED_IPI_SUPPORTED */
3598
3603struct k_work_delayable;
3604struct k_work_sync;
3605
3622typedef void (*k_work_handler_t)(struct k_work *work);
3623
3637void k_work_init(struct k_work *work,
3639
3654int k_work_busy_get(const struct k_work *work);
3655
3669static inline bool k_work_is_pending(const struct k_work *work);
3670
3692 struct k_work *work);
3693
3702int k_work_submit(struct k_work *work);
3703
3728bool k_work_flush(struct k_work *work,
3729 struct k_work_sync *sync);
3730
3750int k_work_cancel(struct k_work *work);
3751
3782bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3783
3794
3815 k_thread_stack_t *stack, size_t stack_size,
3816 int prio, const struct k_work_queue_config *cfg);
3817
3828void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg);
3829
3839static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3840
3864int k_work_queue_drain(struct k_work_q *queue, bool plug);
3865
3880
3896
3912
3924static inline struct k_work_delayable *
3926
3941
3956static inline bool k_work_delayable_is_pending(
3957 const struct k_work_delayable *dwork);
3958
3973 const struct k_work_delayable *dwork);
3974
3989 const struct k_work_delayable *dwork);
3990
4019 struct k_work_delayable *dwork,
4020 k_timeout_t delay);
4021
4036 k_timeout_t delay);
4037
4074 struct k_work_delayable *dwork,
4075 k_timeout_t delay);
4076
4090 k_timeout_t delay);
4091
4117 struct k_work_sync *sync);
4118
4140
4170 struct k_work_sync *sync);
4171
4172enum {
4177 /* The atomic API is used for all work and queue flags fields to
4178 * enforce sequential consistency in SMP environments.
4179 */
4180
4181 /* Bits that represent the work item states. At least nine of the
4182 * combinations are distinct valid stable states.
4183 */
4184 K_WORK_RUNNING_BIT = 0,
4185 K_WORK_CANCELING_BIT = 1,
4186 K_WORK_QUEUED_BIT = 2,
4187 K_WORK_DELAYED_BIT = 3,
4188 K_WORK_FLUSHING_BIT = 4,
4189
4190 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
4191 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
4192
4193 /* Static work flags */
4194 K_WORK_DELAYABLE_BIT = 8,
4195 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
4196
4197 /* Dynamic work queue flags */
4198 K_WORK_QUEUE_STARTED_BIT = 0,
4199 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
4200 K_WORK_QUEUE_BUSY_BIT = 1,
4201 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
4202 K_WORK_QUEUE_DRAIN_BIT = 2,
4203 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
4204 K_WORK_QUEUE_PLUGGED_BIT = 3,
4205 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
4206 K_WORK_QUEUE_STOP_BIT = 4,
4207 K_WORK_QUEUE_STOP = BIT(K_WORK_QUEUE_STOP_BIT),
4208
4209 /* Static work queue flags */
4210 K_WORK_QUEUE_NO_YIELD_BIT = 8,
4211 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
4212
4216 /* Transient work flags */
4217
4223 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
4224
4229 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
4230
4236 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
4237
4243 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
4244
4249 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
4250};
4251
4253struct k_work {
4254 /* All fields are protected by the work module spinlock. No fields
4255 * are to be accessed except through kernel API.
4256 */
4257
4258 /* Node to link into k_work_q pending list. */
4260
4261 /* The function to be invoked by the work queue thread. */
4263
4264 /* The queue on which the work item was last submitted. */
4266
4267 /* State of the work item.
4268 *
4269 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
4270 *
4271 * It can be RUNNING and CANCELING simultaneously.
4272 */
4274};
4275
4276#define Z_WORK_INITIALIZER(work_handler) { \
4277 .handler = (work_handler), \
4278}
4279
4282 /* The work item. */
4283 struct k_work work;
4284
4285 /* Timeout used to submit work after a delay. */
4286 struct _timeout timeout;
4287
4288 /* The queue to which the work should be submitted. */
4290};
4291
4292#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
4293 .work = { \
4294 .handler = (work_handler), \
4295 .flags = K_WORK_DELAYABLE, \
4296 }, \
4297}
4298
4315#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4316 struct k_work_delayable work \
4317 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4318
4323/* Record used to wait for work to flush.
4324 *
4325 * The work item is inserted into the queue that will process (or is
4326 * processing) the item, and will be processed as soon as the item
4327 * completes. When the flusher is processed the semaphore will be
4328 * signaled, releasing the thread waiting for the flush.
4329 */
4330struct z_work_flusher {
4331 struct k_work work;
4332 struct k_sem sem;
4333};
4334
4335/* Record used to wait for work to complete a cancellation.
4336 *
4337 * The work item is inserted into a global queue of pending cancels.
4338 * When a cancelling work item goes idle any matching waiters are
4339 * removed from pending_cancels and are woken.
4340 */
4341struct z_work_canceller {
4342 sys_snode_t node;
4343 struct k_work *work;
4344 struct k_sem sem;
4345};
4346
4365 union {
4366 struct z_work_flusher flusher;
4367 struct z_work_canceller canceller;
4368 };
4369};
4370
4382 const char *name;
4383
4397
4402
4412};
4413
4415struct k_work_q {
4416 /* The thread that animates the work. */
4418
4419 /* The thread ID that animates the work. This may be an external thread
4420 * if k_work_queue_run() is used.
4421 */
4423
4424 /* All the following fields must be accessed only while the
4425 * work module spinlock is held.
4426 */
4427
4428 /* List of k_work items to be worked. */
4430
4431 /* Wait queue for idle work thread. */
4432 _wait_q_t notifyq;
4433
4434 /* Wait queue for threads waiting for the queue to drain. */
4435 _wait_q_t drainq;
4436
4437 /* Flags describing queue state. */
4439
4440#if defined(CONFIG_WORKQUEUE_WORK_TIMEOUT)
4441 struct _timeout work_timeout_record;
4442 struct k_work *work;
4443 k_timeout_t work_timeout;
4444#endif /* defined(CONFIG_WORKQUEUE_WORK_TIMEOUT) */
4445};
4446
4447/* Provide the implementation for inline functions declared above */
4448
4449static inline bool k_work_is_pending(const struct k_work *work)
4450{
4451 return k_work_busy_get(work) != 0;
4452}
4453
4454static inline struct k_work_delayable *
4459
4461 const struct k_work_delayable *dwork)
4462{
4463 return k_work_delayable_busy_get(dwork) != 0;
4464}
4465
4467 const struct k_work_delayable *dwork)
4468{
4469 return z_timeout_expires(&dwork->timeout);
4470}
4471
4473 const struct k_work_delayable *dwork)
4474{
4475 return z_timeout_remaining(&dwork->timeout);
4476}
4477
4479{
4480 return queue->thread_id;
4481}
4482
4485struct k_work_user;
4486
4501typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4502
4507struct k_work_user_q {
4508 struct k_queue queue;
4509 struct k_thread thread;
4510};
4511
4512enum {
4513 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4514};
4515
4516struct k_work_user {
4517 void *_reserved; /* Used by k_queue implementation. */
4518 k_work_user_handler_t handler;
4520};
4521
4526#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4527#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4528#else
4529#define Z_WORK_USER_INITIALIZER(work_handler) \
4530 { \
4531 ._reserved = NULL, \
4532 .handler = (work_handler), \
4533 .flags = 0 \
4534 }
4535#endif
4536
4548#define K_WORK_USER_DEFINE(work, work_handler) \
4549 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4550
4560static inline void k_work_user_init(struct k_work_user *work,
4561 k_work_user_handler_t handler)
4562{
4563 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4564}
4565
4582static inline bool k_work_user_is_pending(struct k_work_user *work)
4583{
4584 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4585}
4586
4605static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4606 struct k_work_user *work)
4607{
4608 int ret = -EBUSY;
4609
4610 if (!atomic_test_and_set_bit(&work->flags,
4611 K_WORK_USER_STATE_PENDING)) {
4612 ret = k_queue_alloc_append(&work_q->queue, work);
4613
4614 /* Couldn't insert into the queue. Clear the pending bit
4615 * so the work item can be submitted again
4616 */
4617 if (ret != 0) {
4618 atomic_clear_bit(&work->flags,
4619 K_WORK_USER_STATE_PENDING);
4620 }
4621 }
4622
4623 return ret;
4624}
4625
4645void k_work_user_queue_start(struct k_work_user_q *work_q,
4646 k_thread_stack_t *stack,
4647 size_t stack_size, int prio,
4648 const char *name);
4649
4660static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4661{
4662 return &work_q->thread;
4663}
4664
4671struct k_work_poll {
4672 struct k_work work;
4673 struct k_work_q *workq;
4674 struct z_poller poller;
4675 struct k_poll_event *events;
4676 int num_events;
4677 k_work_handler_t real_handler;
4678 struct _timeout timeout;
4679 int poll_result;
4680};
4681
4702#define K_WORK_DEFINE(work, work_handler) \
4703 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4704
4714void k_work_poll_init(struct k_work_poll *work,
4715 k_work_handler_t handler);
4716
4752 struct k_work_poll *work,
4753 struct k_poll_event *events,
4754 int num_events,
4755 k_timeout_t timeout);
4756
4788int k_work_poll_submit(struct k_work_poll *work,
4789 struct k_poll_event *events,
4790 int num_events,
4791 k_timeout_t timeout);
4792
4807int k_work_poll_cancel(struct k_work_poll *work);
4808
4820struct k_msgq {
4822 _wait_q_t wait_q;
4826 size_t msg_size;
4839
4840 Z_DECL_POLL_EVENT
4841
4844
4846
4847#ifdef CONFIG_OBJ_CORE_MSGQ
4848 struct k_obj_core obj_core;
4849#endif
4850};
4856#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4857 { \
4858 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4859 .lock = {}, \
4860 .msg_size = q_msg_size, \
4861 .max_msgs = q_max_msgs, \
4862 .buffer_start = q_buffer, \
4863 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4864 .read_ptr = q_buffer, \
4865 .write_ptr = q_buffer, \
4866 .used_msgs = 0, \
4867 Z_POLL_EVENT_OBJ_INIT(obj) \
4868 .flags = 0, \
4869 }
4870
4876#define K_MSGQ_FLAG_ALLOC BIT(0)
4877
4889
4890
4909#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4910 static char __noinit __aligned(q_align) \
4911 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4912 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4913 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4914 (q_msg_size), (q_max_msgs))
4915
4930void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4931 uint32_t max_msgs);
4932
4952__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4953 uint32_t max_msgs);
4954
4965int k_msgq_cleanup(struct k_msgq *msgq);
4966
4987__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4988
5013__syscall int k_msgq_put_front(struct k_msgq *msgq, const void *data);
5014
5035__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
5036
5051__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
5052
5069__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
5070
5080__syscall void k_msgq_purge(struct k_msgq *msgq);
5081
5092__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
5093
5102__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
5103 struct k_msgq_attrs *attrs);
5104
5105
5106static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
5107{
5108 return msgq->max_msgs - msgq->used_msgs;
5109}
5110
5120__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
5121
5122static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
5123{
5124 return msgq->used_msgs;
5125}
5126
5141 size_t size;
5145 void *tx_data;
5151 k_tid_t _syncing_thread;
5152#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
5154 struct k_sem *_async_sem;
5155#endif
5156};
5161struct k_mbox {
5163 _wait_q_t tx_msg_queue;
5165 _wait_q_t rx_msg_queue;
5167
5169
5170#ifdef CONFIG_OBJ_CORE_MAILBOX
5171 struct k_obj_core obj_core;
5172#endif
5173};
5178#define Z_MBOX_INITIALIZER(obj) \
5179 { \
5180 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
5181 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
5182 }
5183
5197#define K_MBOX_DEFINE(name) \
5198 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
5199 Z_MBOX_INITIALIZER(name) \
5200
5208void k_mbox_init(struct k_mbox *mbox);
5209
5229int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5230 k_timeout_t timeout);
5231
5245void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5246 struct k_sem *sem);
5247
5265int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
5266 void *buffer, k_timeout_t timeout);
5267
5281void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
5282
5300__syscall void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size);
5301
5306
5307struct k_pipe {
5308 size_t waiting;
5311 _wait_q_t data;
5312 _wait_q_t space;
5314
5315 Z_DECL_POLL_EVENT
5316#ifdef CONFIG_OBJ_CORE_PIPE
5317 struct k_obj_core obj_core;
5318#endif
5320};
5321
5325#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5326{ \
5327 .waiting = 0, \
5328 .buf = RING_BUF_INIT(pipe_buffer, pipe_buffer_size), \
5329 .data = Z_WAIT_Q_INIT(&obj.data), \
5330 .space = Z_WAIT_Q_INIT(&obj.space), \
5331 .flags = PIPE_FLAG_OPEN, \
5332 Z_POLL_EVENT_OBJ_INIT(obj) \
5333}
5351#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5352 static unsigned char __noinit __aligned(pipe_align) \
5353 _k_pipe_buf_##name[pipe_buffer_size]; \
5354 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5355 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5356
5357
5374__syscall int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len,
5375 k_timeout_t timeout);
5376
5392__syscall int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len,
5393 k_timeout_t timeout);
5394
5404__syscall void k_pipe_reset(struct k_pipe *pipe);
5405
5414__syscall void k_pipe_close(struct k_pipe *pipe);
5420struct k_mem_slab_info {
5421 uint32_t num_blocks;
5422 size_t block_size;
5423 uint32_t num_used;
5424#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5425 uint32_t max_used;
5426#endif
5427};
5428
5429struct k_mem_slab {
5430 _wait_q_t wait_q;
5431 struct k_spinlock lock;
5432 char *buffer;
5433 char *free_list;
5434 struct k_mem_slab_info info;
5435
5437
5438#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5439 struct k_obj_core obj_core;
5440#endif
5441};
5442
5443#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5444 _slab_num_blocks) \
5445 { \
5446 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5447 .lock = {}, \
5448 .buffer = _slab_buffer, \
5449 .free_list = NULL, \
5450 .info = {_slab_num_blocks, _slab_block_size, 0} \
5451 }
5452
5453
5489#define K_MEM_SLAB_DEFINE_IN_SECT(name, in_section, slab_block_size, slab_num_blocks, slab_align) \
5490 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5491 "slab_block_size must be a multiple of slab_align"); \
5492 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5493 "slab_align must be a power of 2"); \
5494 char in_section __aligned(WB_UP( \
5495 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5496 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5497 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5498
5522#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5523 K_MEM_SLAB_DEFINE_IN_SECT(name, __noinit_named(k_mem_slab_buf_##name), slab_block_size, \
5524 slab_num_blocks, slab_align)
5525
5542#define K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, in_section, slab_block_size, slab_num_blocks, \
5543 slab_align) \
5544 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5545 "slab_block_size must be a multiple of slab_align"); \
5546 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5547 "slab_align must be a power of 2"); \
5548 static char in_section __aligned(WB_UP( \
5549 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5550 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5551 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5552
5567#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5568 K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, __noinit_named(k_mem_slab_buf_##name), \
5569 slab_block_size, slab_num_blocks, slab_align)
5570
5592int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5593 size_t block_size, uint32_t num_blocks);
5594
5617int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5618 k_timeout_t timeout);
5619
5629void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5630
5641static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5642{
5643 return slab->info.num_used;
5644}
5645
5656static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5657{
5658#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5659 return slab->info.max_used;
5660#else
5661 ARG_UNUSED(slab);
5662 return 0;
5663#endif
5664}
5665
5676static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5677{
5678 return slab->info.num_blocks - slab->info.num_used;
5679}
5680
5693int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5694
5706int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5707
5715/* kernel synchronized heap struct */
5716
5717struct k_heap {
5719 _wait_q_t wait_q;
5721};
5722
5736void k_heap_init(struct k_heap *h, void *mem,
5737 size_t bytes) __attribute_nonnull(1);
5738
5759void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5760 k_timeout_t timeout) __attribute_nonnull(1);
5761
5783void *k_heap_alloc(struct k_heap *h, size_t bytes,
5784 k_timeout_t timeout) __attribute_nonnull(1);
5785
5808void *k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
5809 __attribute_nonnull(1);
5810
5834void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
5835 __attribute_nonnull(1);
5836
5847void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5848
5849/* Hand-calculated minimum heap sizes needed to return a successful
5850 * 1-byte allocation. See details in lib/os/heap.[ch]
5851 */
5852#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5853
5870#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5871 char in_section \
5872 __aligned(8) /* CHUNK_UNIT */ \
5873 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5874 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5875 .heap = { \
5876 .init_mem = kheap_##name, \
5877 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5878 }, \
5879 }
5880
5895#define K_HEAP_DEFINE(name, bytes) \
5896 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5897 __noinit_named(kheap_buf_##name))
5898
5913#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5914 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5915
5925int k_heap_array_get(struct k_heap **heap);
5926
5956void *k_aligned_alloc(size_t align, size_t size);
5957
5969void *k_malloc(size_t size);
5970
5981void k_free(void *ptr);
5982
5994void *k_calloc(size_t nmemb, size_t size);
5995
6013void *k_realloc(void *ptr, size_t size);
6014
6017/* polling API - PRIVATE */
6018
6019#ifdef CONFIG_POLL
6020#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
6021#else
6022#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
6023#endif
6024
6025/* private - types bit positions */
6026enum _poll_types_bits {
6027 /* can be used to ignore an event */
6028 _POLL_TYPE_IGNORE,
6029
6030 /* to be signaled by k_poll_signal_raise() */
6031 _POLL_TYPE_SIGNAL,
6032
6033 /* semaphore availability */
6034 _POLL_TYPE_SEM_AVAILABLE,
6035
6036 /* queue/FIFO/LIFO data availability */
6037 _POLL_TYPE_DATA_AVAILABLE,
6038
6039 /* msgq data availability */
6040 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
6041
6042 /* pipe data availability */
6043 _POLL_TYPE_PIPE_DATA_AVAILABLE,
6044
6045 _POLL_NUM_TYPES
6046};
6047
6048#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
6049
6050/* private - states bit positions */
6051enum _poll_states_bits {
6052 /* default state when creating event */
6053 _POLL_STATE_NOT_READY,
6054
6055 /* signaled by k_poll_signal_raise() */
6056 _POLL_STATE_SIGNALED,
6057
6058 /* semaphore is available */
6059 _POLL_STATE_SEM_AVAILABLE,
6060
6061 /* data is available to read on queue/FIFO/LIFO */
6062 _POLL_STATE_DATA_AVAILABLE,
6063
6064 /* queue/FIFO/LIFO wait was cancelled */
6065 _POLL_STATE_CANCELLED,
6066
6067 /* data is available to read on a message queue */
6068 _POLL_STATE_MSGQ_DATA_AVAILABLE,
6069
6070 /* data is available to read from a pipe */
6071 _POLL_STATE_PIPE_DATA_AVAILABLE,
6072
6073 _POLL_NUM_STATES
6074};
6075
6076#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
6077
6078#define _POLL_EVENT_NUM_UNUSED_BITS \
6079 (32 - (0 \
6080 + 8 /* tag */ \
6081 + _POLL_NUM_TYPES \
6082 + _POLL_NUM_STATES \
6083 + 1 /* modes */ \
6084 ))
6085
6086/* end of polling API - PRIVATE */
6087
6088
6097/* Public polling API */
6098
6099/* public - values for k_poll_event.type bitfield */
6100#define K_POLL_TYPE_IGNORE 0
6101#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
6102#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
6103#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
6104#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
6105#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
6106#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
6107
6108/* public - polling modes */
6110 /* polling thread does not take ownership of objects when available */
6112
6115
6116/* public - values for k_poll_event.state bitfield */
6117#define K_POLL_STATE_NOT_READY 0
6118#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
6119#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
6120#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
6121#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
6122#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
6123#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
6124#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
6125
6126/* public - poll signal object */
6130
6135 unsigned int signaled;
6136
6139};
6140
6141#define K_POLL_SIGNAL_INITIALIZER(obj) \
6142 { \
6143 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
6144 .signaled = 0, \
6145 .result = 0, \
6146 }
6153 sys_dnode_t _node;
6154
6156 struct z_poller *poller;
6157
6160
6162 uint32_t type:_POLL_NUM_TYPES;
6163
6165 uint32_t state:_POLL_NUM_STATES;
6166
6169
6171 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
6172
6174 union {
6175 /* The typed_* fields below are used by K_POLL_EVENT_*INITIALIZER() macros to ensure
6176 * type safety of polled objects.
6177 */
6178 void *obj, *typed_K_POLL_TYPE_IGNORE;
6179 struct k_poll_signal *signal, *typed_K_POLL_TYPE_SIGNAL;
6180 struct k_sem *sem, *typed_K_POLL_TYPE_SEM_AVAILABLE;
6181 struct k_fifo *fifo, *typed_K_POLL_TYPE_FIFO_DATA_AVAILABLE;
6182 struct k_queue *queue, *typed_K_POLL_TYPE_DATA_AVAILABLE;
6183 struct k_msgq *msgq, *typed_K_POLL_TYPE_MSGQ_DATA_AVAILABLE;
6184 struct k_pipe *pipe, *typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE;
6185 };
6186};
6187
6188#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
6189 { \
6190 .poller = NULL, \
6191 .type = _event_type, \
6192 .state = K_POLL_STATE_NOT_READY, \
6193 .mode = _event_mode, \
6194 .unused = 0, \
6195 { \
6196 .typed_##_event_type = _event_obj, \
6197 }, \
6198 }
6199
6200#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
6201 event_tag) \
6202 { \
6203 .tag = event_tag, \
6204 .type = _event_type, \
6205 .state = K_POLL_STATE_NOT_READY, \
6206 .mode = _event_mode, \
6207 .unused = 0, \
6208 { \
6209 .typed_##_event_type = _event_obj, \
6210 }, \
6211 }
6212
6228void k_poll_event_init(struct k_poll_event *event, uint32_t type,
6229 int mode, void *obj);
6230
6274__syscall int k_poll(struct k_poll_event *events, int num_events,
6275 k_timeout_t timeout);
6276
6285__syscall void k_poll_signal_init(struct k_poll_signal *sig);
6286
6292__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
6293
6304__syscall void k_poll_signal_check(struct k_poll_signal *sig,
6305 unsigned int *signaled, int *result);
6306
6331__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
6332
6353static inline void k_cpu_idle(void)
6354{
6355 arch_cpu_idle();
6356}
6357
6372static inline void k_cpu_atomic_idle(unsigned int key)
6373{
6375}
6376
6385#ifdef ARCH_EXCEPT
6386/* This architecture has direct support for triggering a CPU exception */
6387#define z_except_reason(reason) ARCH_EXCEPT(reason)
6388#else
6389
6390#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6391#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6392#else
6393#define __EXCEPT_LOC()
6394#endif
6395
6396/* NOTE: This is the implementation for arches that do not implement
6397 * ARCH_EXCEPT() to generate a real CPU exception.
6398 *
6399 * We won't have a real exception frame to determine the PC value when
6400 * the oops occurred, so print file and line number before we jump into
6401 * the fatal error handler.
6402 */
6403#define z_except_reason(reason) do { \
6404 __EXCEPT_LOC(); \
6405 z_fatal_error(reason, NULL); \
6406 } while (false)
6407
6408#endif /* _ARCH__EXCEPT */
6424#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6425
6434#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6435
6440/*
6441 * private APIs that are utilized by one or more public APIs
6442 */
6443
6447void z_timer_expiration_handler(struct _timeout *timeout);
6452#ifdef CONFIG_PRINTK
6460__syscall void k_str_out(char *c, size_t n);
6461#endif
6462
6489__syscall int k_float_disable(struct k_thread *thread);
6490
6529__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6530
6544
6552
6561
6572
6583
6592
6601
6602#ifdef __cplusplus
6603}
6604#endif
6605
6606#include <zephyr/tracing/tracing.h>
6607#include <zephyr/syscalls/kernel.h>
6608
6609#endif /* !_ASMLANGUAGE */
6610
6611#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
long atomic_t
Definition atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:1998
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1414
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:1950
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:1979
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:1963
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:2013
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:1926
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:6353
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6372
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
static void sys_dnode_init(sys_dnode_t *node)
initialize node to its state when not in a list
Definition dlist.h:219
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events (safe version)
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2609
uint32_t k_event_wait_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events (safe version)
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
static bool sys_sflist_is_empty(const sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
int k_heap_array_get(struct k_heap **heap)
Get the array of statically defined heaps.
void * k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
Allocate and initialize memory for an array of objects from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:1269
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5641
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5656
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5676
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to the end of a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put_front(struct k_msgq *msgq, const void *data)
Send a message to the front of a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_close(struct k_pipe *pipe)
Close a pipe.
void k_pipe_reset(struct k_pipe *pipe)
Reset a pipe This routine resets the pipe, discarding any unread data and unblocking any threads wait...
void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size)
initialize a pipe
pipe_flags
Definition kernel.h:5302
int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len, k_timeout_t timeout)
Read data from a pipe This routine reads up to len bytes of data from pipe.
@ PIPE_FLAG_RESET
Definition kernel.h:5304
@ PIPE_FLAG_OPEN
Definition kernel.h:5303
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:6109
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:6111
@ K_POLL_NUM_MODES
Definition kernel.h:6113
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:366
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:148
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:285
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
void k_thread_absolute_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:485
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:579
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:676
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
static void k_thread_start(k_tid_t thread)
Start an inactive thread.
Definition kernel.h:1146
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_reschedule(void)
Invoke the scheduler.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:106
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1704
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1688
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:1850
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1707
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1611
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1723
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4478
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4449
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4466
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
int k_work_queue_stop(struct k_work_q *queue, k_timeout_t timeout)
Stop a work queue.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4605
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4582
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3622
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4460
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4560
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4660
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4455
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4472
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg)
Run work queue using calling thread.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4501
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:4229
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:4236
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:4243
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:4223
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:4249
#define BUILD_ASSERT(EXPR, MSG...)
Definition llvm.h:51
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask, k_ipi_func_t func)
Add an IPI work item to the IPI work queue.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
void k_ipi_work_signal(void)
Signal that there is one or more IPI work items to process.
int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout)
Wait until the IPI work item has been processed by all targeted CPUs.
execution_context_types
Definition kernel.h:91
@ K_ISR
Definition kernel.h:92
@ K_COOP_THREAD
Definition kernel.h:93
@ K_PREEMPT_THREAD
Definition kernel.h:94
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
static void k_ipi_work_init(struct k_ipi_work *work)
Initialize the specified IPI work item.
Definition kernel.h:3533
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:314
Memory Statistics.
flags
Definition parser.h:97
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Structure to store initialization entry information.
Definition init.h:66
Definition kernel.h:3271
_wait_q_t wait_q
Definition kernel.h:3272
Event Structure.
Definition kernel.h:2399
struct k_spinlock lock
Definition kernel.h:2402
uint32_t events
Definition kernel.h:2401
_wait_q_t wait_q
Definition kernel.h:2400
Definition kernel.h:2629
futex structure
Definition kernel.h:2320
atomic_t val
Definition kernel.h:2321
Definition kernel.h:5717
struct k_spinlock lock
Definition kernel.h:5720
struct sys_heap heap
Definition kernel.h:5718
_wait_q_t wait_q
Definition kernel.h:5719
Definition kernel.h:2870
Mailbox Message Structure.
Definition kernel.h:5139
k_tid_t tx_target_thread
target thread id
Definition kernel.h:5149
void * tx_data
sender's message data buffer
Definition kernel.h:5145
k_tid_t rx_source_thread
source thread id
Definition kernel.h:5147
uint32_t info
application-defined information value
Definition kernel.h:5143
size_t size
size of message (in bytes)
Definition kernel.h:5141
Mailbox Structure.
Definition kernel.h:5161
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:5163
struct k_spinlock lock
Definition kernel.h:5166
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:5165
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:4881
uint32_t used_msgs
Used messages.
Definition kernel.h:4887
size_t msg_size
Message Size.
Definition kernel.h:4883
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4885
Message Queue Structure.
Definition kernel.h:4820
size_t msg_size
Message size.
Definition kernel.h:4826
char * read_ptr
Read pointer.
Definition kernel.h:4834
uint32_t used_msgs
Number of used messages.
Definition kernel.h:4838
char * buffer_end
End of message buffer.
Definition kernel.h:4832
struct k_spinlock lock
Lock.
Definition kernel.h:4824
char * write_ptr
Write pointer.
Definition kernel.h:4836
char * buffer_start
Start of message buffer.
Definition kernel.h:4830
uint8_t flags
Message queue.
Definition kernel.h:4843
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:4822
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4828
Mutex Structure.
Definition kernel.h:3159
uint32_t lock_count
Current lock count.
Definition kernel.h:3166
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:3161
int owner_orig_prio
Original thread priority.
Definition kernel.h:3169
struct k_thread * owner
Mutex owner.
Definition kernel.h:3163
Object core structure.
Definition obj_core.h:121
Definition kernel.h:5307
uint8_t flags
Definition kernel.h:5313
struct ring_buf buf
Definition kernel.h:5309
_wait_q_t data
Definition kernel.h:5311
_wait_q_t space
Definition kernel.h:5312
struct k_spinlock lock
Definition kernel.h:5310
size_t waiting
Definition kernel.h:5308
Poll Event.
Definition kernel.h:6151
struct k_poll_signal * signal
Definition kernel.h:6179
struct k_pipe * pipe
Definition kernel.h:6184
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:6159
struct k_fifo * fifo
Definition kernel.h:6181
struct k_msgq * msgq
Definition kernel.h:6183
struct k_queue * queue
Definition kernel.h:6182
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:6171
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:6162
struct k_sem * sem
Definition kernel.h:6180
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:6165
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:6168
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6156
void * obj
Definition kernel.h:6178
Definition kernel.h:6127
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6129
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:6138
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:6135
Definition kernel.h:2028
struct k_spinlock lock
Definition kernel.h:2030
_wait_q_t wait_q
Definition kernel.h:2031
sys_sflist_t data_q
Definition kernel.h:2029
Semaphore structure.
Definition kernel.h:3364
Kernel Spin Lock.
Definition spinlock.h:45
Definition thread.h:198
Thread Structure.
Definition thread.h:250
struct _thread_base base
Definition thread.h:252
struct k_heap * resource_pool
resource pool
Definition thread.h:340
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:279
Kernel timeout type.
Definition clock.h:65
A structure used to submit work after a delay.
Definition kernel.h:4281
struct _timeout timeout
Definition kernel.h:4286
struct k_work_q * queue
Definition kernel.h:4289
struct k_work work
Definition kernel.h:4283
A structure used to hold work until it can be processed.
Definition kernel.h:4415
sys_slist_t pending
Definition kernel.h:4429
_wait_q_t drainq
Definition kernel.h:4435
k_tid_t thread_id
Definition kernel.h:4422
_wait_q_t notifyq
Definition kernel.h:4432
uint32_t flags
Definition kernel.h:4438
struct k_thread thread
Definition kernel.h:4417
A structure holding optional configuration items for a work queue.
Definition kernel.h:4377
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4382
uint32_t work_timeout_ms
Controls whether work queue monitors work timeouts.
Definition kernel.h:4411
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4401
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4396
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4364
struct z_work_canceller canceller
Definition kernel.h:4367
struct z_work_flusher flusher
Definition kernel.h:4366
A structure used to submit work.
Definition kernel.h:4253
k_work_handler_t handler
Definition kernel.h:4262
uint32_t flags
Definition kernel.h:4273
struct k_work_q * queue
Definition kernel.h:4265
sys_snode_t node
Definition kernel.h:4259
A structure to represent a ring buffer.
Definition ring_buffer.h:49
Definition sys_heap.h:57
Definition mem_stats.h:24
Macros to abstract toolchain specific capabilities.